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CHAPTER 1

INTRODUCTION

For decades, the pace of semiconductor development has been dictated by Moore’s Law,

the observation that transistor density roughly doubles every 18-24 months. The explosive

growth of the semiconductor industry has been fueled by the metronomic pace of transistor

scaling. In 1974, Dennard laid out the scaling principles that would serve to drive the

industry forward for decades, enabling continual improvements in transistor performance,

energy efficiency, and cost [1]. Dennard scaling broke down, however, in the early 2000s,

as IC power density and transistor short channel effects reduced the efficiency benefits of

scaling [2–4], and as the cost of lithography began to increase dramatically due to the need

for ultra-fine feature sizes at advanced nodes [5]. Additionally, as on-chip interconnects

scale down they begin to face significant performance and reliability challenges, as shown

in Fig. 1.1 [6]. As copper wires decrease in size, the average crystal grain size decreases,

increasing electron scattering from grain boundaries, and therefore increasing the resistivity

of the copper [7, 8]. Line edge roughness also typically degrades at advanced process

nodes, leading both to increases in surface scattering as well as reductions in minimum wire

width [9,10], and therefore further reducing the wire resisitivity. While news of the demise

of Moore’s Law has yet been premature, there is widespread agreement in the industry that

conventional 2D CMOS device scaling is unlikely to continue indefinitely [11].

1.1 Motivation

Three-dimensional integration (3DI) has been proposed as an approach for increasing the

density and performance of integrated circuits without requiring continued aggressive two-

dimensional scaling [12]. Three-dimensional integrated circuits (3DICs) are composed of

multiple active tiers, and interconnected vertically with through-layer vias. By stacking
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Figure 1.1: As process nodes continue to scale, logic and BEOL exhibit opposing delay
trends. While logic cells typically operate faster and more efficiently at smaller nodes, the
wire RC delay increases dramatically, primarily due to increased wire resistance. Figure
from [6].

dice directly atop one another the inter-die interconnect distance can be greatly reduced,

significantly reducing interconnect delay and power consumption. Furthermore, the inter-

die interconnect density can be greatly enhanced compared to package-level integration, as

through-layer vias are typically much smaller than package level solder bumps. When taken

together, the combination of increased IO density and shorter interconnect distance offers

potentially orders of magnitude improvement in inter-die signaling bandwidth, latency, and

interconnect power consumption.

There are many different variants of 3D integration, as illustrated in Fig. 1.2, each

with their own strengths and weaknesses. The most widely-studied form uses through-

silicon vias (TSVs) to directly interconnect stacked dice by routing signals directly through

the die substrate. Interposer-based solutions, in which dice are mounted on a (typically)

silicon interposer are a stepping-stone between conventional 2D packaging and full 3DIC

design [13–15]. The most aggressive form of 3D integration is monolithic 3D (M3D), in

which logic layers are deposited or grown directly atop one another, yielding ultra-fine-
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Figure 1.2: There are many potential configurations for 3DICs, each with their own costs
and advantages. Designers must manage the complexity of the 3DIC design space in order
to achieve higher performance and lower cost systems.

grained interconnection at the cost of significantly more complex fabrication [16–18].

Several significant challenges, however, stand in the way of widespread adoption of 3D

integration techniques. Due to the increased complexity of 3DIC design, it is challenging

to accurately compare the performance of a 3DIC to an equivalent 2D counterpart. Ad-

ditionally, 3DICs suffer from reduced thermal performance due to the increased thermal

resistance between the lower dice in the stack and the (top-mounted) heat sink. Addition-

ally, despite the reduced interconnect power consumption, the overall 2D power density of

a 3D stack could be higher than the power density of an equivalent 2DIC, placing further

strain on the cooling solution. Due to the many possible combinations of material proper-

ties, transistor properties, integration methodologies, and operating conditions for a 3DIC,

it is imperative to develop a tool for rapid 3DIC simulation and pathfinding.

Stochastic wirelength distributions are useful for quickly estimating the interconnect

properties of hypothetical integrated circuits. In order to estimate the interconnect prop-

erties of large ICs, we can make use of Rent’s rule, the observation that the number of

pins/terminals leaving a logic block has a power-law relationship with the number of logic

elements within that block. First observed in 1960 by E.F. Rent, and further explored

in 1971 by Landman and Russo [19], Rent’s rule forms the basis for interconnect length

estimation techniques. In 1979, Donath expanded on Landman and Russo’s work to es-

timate average connection lengths in ICs, [20], and further extended the methodology to
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Figure 1.3: Schematic of a microfluidic system. Channels are etched into the reverse side of
the silicon substrate and capped to create microscale cooling channels as close as possible
to the active circuitry. Figure from [33].

estimate the overall wire length distribution in 1981 [21]. In 1987 Masaki and Yamada

made the first extension towards estimating wire length in three dimensions [22]. Through-

out the early 1990s the relationship between design type and Rent exponent was further

explored [23, 24]. In 1998 Davis published an improved wirelength distribution [25, 26],

which quickly became the basis for future wirelength estimation efforts. Several detailed

3D wirelength distributions were developed by extending the 2D framework [27,28]. These

wirelength estimation methods have been used extensively to explore the impact of differ-

ent technologies on 2D and 3D IC design. By modeling the delay and power consumption

of interconnect links of various lengths, and by combining those models with models of

wire size and pitch in various metal levels, it is possible to estimate the clock frequency

and power consumption of a wide range of 2D and 3D systems [27, 29–32].

Thermal management poses a special challenge for 3DIC performance, as the very

act of stacking dice increases the thermal resistance between the lowest dice and the heat

sink. Making matters worse, the equivalent areal power density of the 3D stack will be
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Figure 1.4: Example of a multi-die stack with integrated microfluidic cooling channels and
through-silicon vias for inter-tier connectivity. Figure from [41].

significantly higher than the power density of either die in isolation, as the area available

for heat removal is drastically reduced. Possibly the most ambitious suggestion is the use

of microfluidic cooling, in which channels are etched into the silicon dice to enable coolant

distribution as closely as possible to the active logic, as shown in Fig. 1.3 [33]. In order

to enable 3D stacking of dice, through silicon vias can be embedded within the residual

silicon, as shown in Fig. 1.4. To further increase both cooling capability and IO density,

high aspect ratio TSVs embedded in micro pin-fin structures have been explored [34, 35],

as shown in Fig. 1.5, and have been utilized to actively cool single-tier ICs [36, 37]. Less

aggressive thermal solutions, such as improved thermal interface materials (TIMs), lateral

heat conduction layers [38], vertical thermal conduction vias [39], and thermal-aware IC

design [40] have also been investigated as potential solutions, and 3DICs will likely require

some combination of all possible approaches to maximize performance and reliability.

1.2 Research objective and contribution

The objective of this research is to better explore the thermal and electrical tradeoffs in-

herent in the design of 3D integrated circuits. The main topics of research detailed in this
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Figure 1.5: Silicon micro pin-fin heat sink with embedded high aspect ratio TSVs. Figure
from [35].

thesis are as follows:

1. Development of improved wire length models for 3D integrated circuits. Stochas-

tic wire length models have been used extensively to predict and analyze the perfor-

mance of 2D and 3D ICs, but existing 3DIC wire length models do not fully account

for the finite size of through silicon vias. In this thesis we derive a correction factor

which can be applied to existing stochastic 3D IC wire length models to improve

their accuracy.

2. Development of improved TSV estimation methods for 3D integrated circuits.

As through silicon vias are critical components for 3D IC design, estimating the total

number of vias required for a 3D implementation of a given design is a key require-

ment for yield and cost forecasting. Current TSV estimation models are adequate for
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shallow 3D stacks of two to four tiers, but they neglect the impact of signals which

must traverse several tiers. We adapt existing stochastic wire length techniques to

improve the state of the art in TSV estimation, and benchmark our results against

several test cases.

3. Integrated thermal and electrical analysis for rapid 3DIC pathfinding. The 3DIC

design space is large and complex, and better tools are needed in order to rapidly ex-

plore the costs and benefits of the many possible 3D configurations for any given

design. To accomplish this goal, the improved stochastic wire length and TSV esti-

mation models are combined with wire sizing and repeater insertion algorithms, in

order to get a complete picture of the interconnect stack in a 2D or 3D IC. These

models are combined with a finite difference thermal solver, capable of rapidly de-

termining the spatial thermal profile of an arbitrary 3D stack, as well as a 3D IC

power delivery model, enabling consideration of the design of the power network

and prediction of the power delivery TSV requirements. These models are then used

to investigate the potential performance implications of a range of 3D integration

scenarios, and to highlight the key challenges posed by heat removal in 3D systems.

4. Experimental thermal benchmarking of a functional 3D testbed. Our theoretical

work suggests that thermal limitations will pose a key limiter for high performance

3D systems. In order to confirm these predictions, we develop a computationally-

functional 3D thermal testbed, composed of a high performance compute-class GPU

and a top-tier thermal die. Using this testbed, we show the direct performance impact

of the reduced thermal headroom in 3D designs, and discuss potential avenues for

thermal mitigation in 3D ICs.

5. Stochastic interconnect length prediction in higher dimensions. High-dimensional

network topologies are routinely encountered in high performance computing sys-

tems, as well as in biological and bio-inspired computing systems. While these sys-
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tems can only be physically implemented in three dimensions, understanding how

interconnect length changes in higher dimensions could help set bounds on the per-

formance of advanced computing systems. To that end, we adapt and extend existing

stochastic wire length modeling frameworks to handle hypercubic systems of arbi-

trary dimension, and investigate some of the broader implications for the design of

highly-interconnected networks.

1.3 Organization of the thesis

The remainder of this thesis is organized as follows:

1. In chapter 2 we develop a stochastic wire length model for 3DICs with large-diameter

TSVs, as well as a general stochastic model for the number of TSVs required in a

3DIC of an arbitrary number of tiers.

2. In chapter 3 we combine the stochastic wire length and TSV estimation models de-

veloped in chapter 2 with wire and repeater sizing algorithms, a finite-difference

thermal simulation module, and an analytic 3DIC power delivery model to develop

a complete 3DIC virtual integration platform. The combined models are validated

against published data, and predictions are made for various 3DIC design cases.

3. In chapter 4 we describe the development of a computationally-functional 3D thermal

testbed. The performance of the thermal testbed is measured for a variety of machine

learning workloads, and the thermal implications for high performance 3D stacks is

discussed.

4. In chapter 5 we derive stochastic models for wire length estimation in cubic systems

of arbitrary dimension. These models are then used to investigate overall interconnect

parameters in highly-interconnected systems.
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5. In chapter 6 the key conclusions of this thesis are summarized, and potential avenues

for future work are discussed.
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CHAPTER 2

INTERCONNECT MODELING FOR 3D SYSTEMS WITH LARGE TSVS

2.1 Methodology

Joyner et al. developed an interconnect length distribution (ILD) by employing a stochas-

tic formalism [31]. Joyner defined the probability distribution function (PDF) for a gate

existing at position x1 to be

fx[x] =
1

Nx

(u[x]− u[x−Nx]) (2.1)

We extend Joyner’s approach by adding a correction which accounts for the forbidden

zones associated with real TSVs. Here we assume a periodic array of TSVs. We further

assume that each TSV is symmetric, and that each gate has the same length and width, and

that the chip is square. The assumption about gate length and width must be modified to

apply the results of this analysis to real designs, but these assumptions allow us to develop

a qualitative understanding of the impact of finite TSV area without bogging down the

analysis in algebraic bookkeeping.

We define r(x, a, w) to be rectangle function in variable x, starting at x = a, with width

w.

r(x, a, w) = u[x− a)]− u[x− (a+ w)] (2.2)

10



then

f [x, y] =
1

N
(u[x]− u[x−Nx]) (u[y]− u[x−Ny])

− 1

N

∑
n

r(x, nT + t, w)
∑
m

r(y,mT + t, w) (2.3)

f [x, y] =
1

N
r(x, 0, Nx)r(y, 0, Ny)

− 1

N

∑
n

r(x, nT + t, w)
∑
m

r(y,mT + t, w) (2.4)

where u[x] is the unit step function, T is the TSV pitch, t is the TSV offset (distance from

edge of the chip to the first TSV), w is the TSV width, Nx is the length of the chip in the

x direction, Ny is the length of the chip in the y direction, n is the TSV index in the x

direction, and m is the TSV index in the y direction. T , t, w, Nx, and Ny are all measured

in gate lengths. N is a normalization factor which will be treated later; if TSV forbidden

zones are ignored, N simply becomes Nx or Ny. For brevity, we will let qxy designate the

TSV correction term, i.e.,

qxy =
∑
n

r(x, nT + t, w)
∑
m

r(y,mT + t, w) (2.5)

We will also define fo to be the two-dimensional PDF in the absence of TSVs,

fo[x, y] = (u[x]− u[x−Nx]) (u[y]− u[y −Ny]) (2.6)

Under these simplifications, Eq. (2.4) becomes

f [x, y] =
1

N
(fo − qxy) (2.7)

Note that Eq. (2.7) gives the probability of finding a gate at position x, but it now

depends on both x and y. In order to account for the impact of TSVs we must slightly

break the symmetry of the problem.

In order to determine the total number of interconnects of length l, we must first deter-

mine the number of gate pairs separated by l gate lengths. In order for an interconnect to

11



be valid, it must start and end on a valid gate. In other words, if the starting point of the

interconnect is (x1, y1), and the ending point is (x2, y2), then both f [x1, y1] and f [x2, y2]

must be nonzero. In order to determine the number of gate pairs which satisfy this criterion

we can simply sum up all possible combinations of x1, x2, y1, and y2.

∆[l] =
l∑

lx=0

Nx−1∑
x1=0

Ny−1∑
y1=0

f [x1, y1]f [x2, y2] (2.8)

We can constrain the various coordinates as follows

lx = x2 − x1 (2.9)

ly = y2 − y1 (2.10)

l = lx + ly (2.11)

Expanding Eq. (2.8) we find

∆[l] =
l∑

lx=0

Nx−1∑
x1=0

Ny−1∑
y1=0

(fo1 − qxy1) (fo2 − qxy2) (2.12)

∆[l] =
l∑

lx=0

Nx−1∑
x1=0

Ny−1∑
y1=0

{fo1fo2 − fo1qxy2 − fo2qxy1 + qxy1qxy2} (2.13)

The first term in Eq. (2.13) yields the number of gate pairs separated by distance l in the

case where TSV width is not treated. The second term in Eq. (2.13) determines the number

of interconnects which start on an allowed gate location, but end on a forbidden location.

Expanding term 2 yields

∆2 =
l∑

lx=0

Nx−1∑
x1=0

Ny−1∑
y1=0

fo1qxy2 (2.14)

∆2 =
∑

lx,x1,y1

r(x1, 0, Nx)r(y1, 0, Ny)

×
∑
n,m

r(x2, nT + t, w)r(y2,mT + t, w) (2.15)

12



Applying the constraints from Eqs. (2.9) to (2.11) removes x2 and y2 from the summation.

∆2 =
∑

lx,x1,y1

r(x1, 0, Nx)r(y1, 0, Ny)

×
∑
n,m

r(x1 − lx, nT + t, w)r(y1 − ly,mT + t, w) (2.16)

∆2 =
∑

lx,x1,y1

r(x1, 0, Nx)r(y1, 0, Ny)

×
∑
n,m

r(x1 − lx, nT + t, w)r(y1 − (l − lx),mT + t, w) (2.17)

Evaluating Eq. (2.17) directly is computationally expensive, but the expression can be sim-

plified considerably by making several key observations.

1. The first portion of the summation is always 1 within the bounds of the chip

2. The second portion of the summation is only 1 when x2 and y2 are inside a forbidden

zone

3. The x2 and y2 portions of the summation are completely independent from one an-

other, and may be separated

Observations 1 and 2 indicate that the entire expression will only be nonzero when x2 and

y2 are within a forbidden zone on the chip. Observation 3 allows us to make a significant

simplification. With no loss of generality, Eq. (2.17) can be rewritten as

∆2 =
∑

lx,x1,y1

r(x1, 0, Nx)r(y1, 0, Ny)

×
∑
n

r(x1 − lx, nT + t, w)
∑
m

r(y1 − (l − lx),mT + t, w) (2.18)

13



Since x2 and y2 are independent we can separate ∆2 into two independent summations.

∆2 =
∑

lx,x1,y1

r(x1, 0, Nx)r(y1, 0, Ny)

×

(∑
n

r(x1 − lx, nT + t, w)

)

×

(∑
m

r(y1 − (l − lx),mT + t, w)

)
(2.19)

Interchanging the order of the n, m, x1, and y1 summations gives us an expression in the

form of f(x, y) = g(x)h(y).

∆2 =
∑
lx

(∑
n,x1

r(x1, 0, Nx)r(x1 − lx, nT + t, w)

)

×

(∑
m,y1

r(y1, 0, Ny)r(y1 − (l − lx),mT + t, w)

)
(2.20)

Or, more compactly

∆2(l) =
∑
lx

∆2x∆2y (2.21)

∆2x(lx) =
∑
n,x1

r(x1, 0, Nx)r(x1 − lx, nT + t, w) (2.22)

∆2y(ly) =
∑
m,y1

r(y1, 0, Ny)r(y1 − ly,mT + t, w) (2.23)

Inspecting ∆2x we can make additional observations to simplify the expression

1. ∆2x is only nonzero when x1 ∈ [nT + t+ lx, nT + t+ w + lx]

2. x1 may only range between 0 and Nx

(a) In this range r(x1, 0, Nx) is always 1

3. For each value of n, the x1 summation counts the number of forbidden gate locations

at the n-th TSV which are more than lx gates away from the left end of the chip

(a) If the gate location at x1 = lx is not within a TSV, then the x1 summation

14



will add w gates to the total for every value of n which satisfies the inequality

lx < nT + t

(b) If the gate location at x1 = lx is within a TSV, then the x1 summation will add

only a portion of the gates for that TSV, and w gates for all TSVs with larger n

Clearly ∆2x is strongly dependent upon lx. Functionally, ∆2x adds up all the possible ways

for the start of the horizontal portion of an interconnect to be located inside a (potential)

forbidden zone, while the other end is located anywhere on the chip. Note that depending

on the value of y2 the starting end of the horizontal interconnect may not actually be in a

forbidden zone; this situation is captured by the ∆2y term. Furthermore, note that x1 could

itself be inside a forbidden zone: this term does not account for that scenario, and will

overestimate the number of forbidden interconnects. Term 4 of Eq. (2.13) corrects for the

case where both ends of the interconnect are located in forbidden zones.

The value of lx determines the value of ∆2x . If lx = 0, then ∆2x is simply the number

of potentially forbidden gate locations in the x directon, and is just equal to Ntsvw, or the

number of TSVs multiplied by the width of each TSV (in gate lengths). Conversely, if

lx = Nx, there exists no valid value of x1 large enough to cause r(x1− lx, nT + t, w) to be

nonzero. As lx increases from 0 to Nx, the lower bound of the x1 summation increases as

well.

Combining these observations, we can construct a function, g(lx), which reproduces

the behavior of the complete summation.

gx(lx) =


ntw l′x < T − t− w

(nt − 1)w l′x > T − t

ntw − l′x + T − t− w else

(2.24)
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lx ∈ [0, Nx] (2.25)

l′x = lx mod T (2.26)

nt = (nmax + 1)−
⌊
lx
T

⌋
(2.27)

A similar analysis for ∆2y yields an equivalent function, g(ly), where ly = l − lx.

gy(ly) =


mtw l′y < T − t− w

(mt − 1)w l′y > T − t

mtw − l′y + T − t− w else

(2.28)

l′y = ly mod T (2.29)

mt = (mmax + 1)−
⌊
lm
T

⌋
(2.30)

Note that for a square chip (Nx = Ny), gx = gy = g, and ∆2 becomes

∆2(l) =
∑
lx

g(lx)g(l − lx) (2.31)

But this is simply the formula for the discrete convolution of g with respect to itself! We

can therefore write

∆2(l) = gx ∗ gy (2.32)

The third term in Eq. (2.13) counts the number of possible interconnects which start in

a forbidden zone, but end in an allowed zone. We can take advantage of its similarity to

term 2 to simplify the solution.

∆3 = fo2qxy1 (2.33)
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∆3 =
∑

lx,x1,y1

r(x2, 0, Nx)r(y2, 0, Ny)

×
∑
n

r(x1, nT + t, w)
∑
m

r(y1,mT + t, w) (2.34)

∆3 =
∑

lx,x1,y1

r(x1 − lx, 0, Nx)r(y1 − (l − lx), 0, Ny)

×
∑
n

r(x1, nT + t, w)
∑
m

r(y1,mT + t, w) (2.35)

∆3 =
∑
lx

(∑
n,x1

r(x1 − lx, 0, Nx)r(x1, nT + t, w)

)

×
∑
m,y1

r(y1 − (l − lx), 0, Ny)r(y1,mT + t, w) (2.36)

∆3(l) =
∑
lx

∆3x∆3y (2.37)

∆3x(lx) =
∑
n,x1

r(x1 − lx, , 0, Nx)r(x1nT + t, w) (2.38)

∆3y(ly) =
∑
m,y1

r(y1 − ly, 0, Ny)r(y1,mT + t, w) (2.39)

Following the same reasoning used in term 2, we can define a function h(x) which captures

the behavior of ∆3x .

hx(lx) =


ntw l′x < t

(nt − 1)w l′x > t+ w

ntw − (l′x − [T − t− w]) else

(2.40)

lx ∈ [0, Nx] (2.41)

l′x = lx mod T (2.42)

nt = (nmax + 1)−
⌊
lx
T

⌋
(2.43)

As with term 2 an equivalent function can be defined for hy(ly), but for a square gate array
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both functions are functionally identical, and ∆3 becomes

∆3(l) =
∑
lx

h(lx)h(l − lx) (2.44)

Again, we note that this result is in the form of an autocorrelation. The final form is then

given by

∆3(l) = hx ∗ hy (2.45)

The final term in the summation corrects for the fact that we’re double-counting forbid-

den interconnections in terms 2 and 3. Term 2 counts interconnects which end in forbidden

zones, whereas term 3 counts interconnects which start at forbidden zones. Potential inter-

connects which both start and end in forbidden locations are counted in both terms 2 and

3, and the final term corrects for this issue. This term is not as analytically tractable, but it

can be easily (if relatively slowly) computed numerically. It can be safely ignored in many

cases, as the number of doubly-forbidden interconnections is generally much smaller than

the number of singly-forbidden paths (relatively few paths start and end in forbidden zones,

compared to paths which only have one end in a forbidden zone).

Now we can rewrite Eq. (2.13) in terms of known quantities

∆[l] = M o
t − g ∗ g − h ∗ h+

l∑
lx=0

Nx−1∑
x1=0

Ny−1∑
y1=0

qxy1qxy2 (2.46)

where M o
t is Joyner’s 2D gate distribution [31]. The final summation is difficult to treat

analytically, but is generally a small correction, and can be ignored in many cases.

The discrepancy between the predicted wire length for a typical system with and with-

out the TSV area correction is shown in Fig. 2.1. For systems with very small TSVs, a small

error is expected, whereas systems with TSVs with diameters of 5 micron and greater are

predicted to exhibit significant error in total wirelength. The performance of the model was

also compared against fully routed monolithic 3DIC designs [42], as shown in Figs. 2.2

and 2.3, with good agreement between the predictions and the routed designs. Notably, for
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Figure 2.1: Error in total wirelength for a hypothetical computing system with 86M gates,
implemented across 4 logic tiers, with 40k TSVs per logic tier. Error increases significantly
as the TSV diameter is increased.

the smallest and largest designs, the model agrees very well with the fully routed results,

whereas for the RCA and FFT designs, the model underestimates the total wirelength. This

could be due to routing congestion in these particular designs; in the future, detailed in-

vestigation of the fully-routed designs could yield further insight into the root causes of

this deviation. Despite this discrepancy, however, it is clear that stochastic methods are

adequate for estimating overall wire length in 3D ICs, further bolstering their use as tools

for rapid design space exploration and pathfinding.

2.2 Via number estimation for monolithic 3D systems

Accurately estimating the number of TSVs or Monolithic Interlayer Vias (MIVs) in a 3DIC

is critical in order to get an accurate understanding of the overall system cost, yield, and

performance, but current methods for via estimation are restricted to two-tier designs. We

present an extension of the current method to devices with arbitrary numbers of tiers. The
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Figure 2.2: Comparison of the wire length distribution predictions to routed monolithic 3D
designs presented in [42]. Good agreement is seen between the total wirelength predicted
by the model and the fully routed designs.

new method is validated against recursively-partitioned netlists, to simulate the partitioning

of a 2D design into a multi-tier 3DIC.

2.2.1 Motivation and development

As technological and economic challenges to conventional 2D scaling intensify 3DICs are

becoming attractive options for improving IC performance. Design in 3D is complicated by

the relatively large number of unknowns, compared to conventional 2D designs. In order to

better understand the 3D design space, extensive modeling of 3DIC performance, layout,

yield, and manufacturing cost has been carried out. In order to determine the thermal profile

of a 3DIC, the total power dissipation and thermal configuration must be known. Since
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Figure 2.3: Comparison of the wire length distribution predictions to routed monolithic 3D
designs presented in [42]. Good agreement is seen between the total wirelength predicted
by the model and the fully routed designs. Total wirelength in all cases is normalized to the
2D case.

interlayer vias act as vertical heat pipes, their impact must be factored in to 3DIC thermal

predictions. Additionally, the overall power dissipation of an IC is strongly influenced

by the power consumed passively by wires, and actively by repeaters. In order to get

an accurate picture of the salient wire and repeater properties in 3DICs, the number of

vias must be accurately modeled [43, 44]. Additionally, the cost to manufacture and test

3DICs is strongly influenced by the number of interlayer vias, as is the overall system

yield [45–53].

Current interlayer-via estimation techniques are direct applications of the stochastic

wirelength distribution presented in [25,26], which itself builds on Rent’s Rule, the empir-

ical observation that the number of terminals leaving a circuit is related through a simple
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power law to the number of logic gates in the circuit [19]:

T = kNp (2.47)

where T is the number of terminals in the circuit, N is the number of logic gates in the

circuit, and k and p are empirically-determined constants. An alternate formulation of

Eq. (2.47) is presented in [20]:

T = αkN
(
1−Np−1) (2.48)

where α is a constant which corrects for the average fanout in the design. It has been

shown that the Rent constants can be uniquely determined for a particular netlist (i.e., are

insensitive to changes in fabrication methodology, such as lithographic shrinks), and similar

types of designs tend to have similar values (e.g. high-performance logic devices tend to

have p = 0.6− 0.7, while memory devices tend to have p = 0.4− 0.5) [54].

Eq. (2.47) can be used to determine the number of connections between two blocks of

logic, A and C as well as the number of connections traversing another block, B, as shown

in Fig. 2.4 [25]. In [25], the following formula is derived:

TA−C = TBC + TAB − TABC − TB (2.49)

where TA−C is the number of terminals connecting blocksA andC, TB is the number of ter-

minals leaving block B, and TBC is the number of terminals leaving the super-block formed

by the combination of blocks B and C. In [45,48,53,55] Eqs. (2.48) and (2.49) are used in

conjunction to derive the following expression for the number of inter-tier connections in a

two-tier 3DIC.

Ntsv = αk1,2(N1 +N2)
(
1− (N1 +N2)

p1,2−1
)

− αk1N1

(
1−Np1−1

1

)
αk2N2

(
1−Np2−1

2

)
(2.50)

This result is useful for two-tier 3DICs, but ignores the through-tier connections required

in multi-tier 3DICs, ultimately resulting in significant undercounting of via requirements
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Figure 2.4: The scenario under consideration, in which two blocks of logic, A and C, are
separated by a third logic block, B, and the number of connections between A and C must
be determined. In a 3DIC, block B would consist of all logic planes between tiers A and
C. Figure after [25]

as the number of tiers in a 3D stack increases.

2.2.2 Interlayer via estimation for multi-tier 3DICs

A more general expression can be derived by considering Eqs. (2.47) and (2.49). For

simplicity, we will treat the case where a large 2D design is being partitioned into multiple

layers for implementation as a 3DIC. Accordingly, we assume that the rent constant and

exponent are identical for all layers in the 3DIC. This assumption can be relaxed by using

the method of [56] to conglomerate multiple macrocells with distinct rent parameters into

one homogeneous effective circuit with effective rent parameters, keff , peff . Additionally

we assume that each layer has the same number of logic gates, Ng. Again, this assumption

can be relaxed easily, but at the cost of a slightly more complex final expression. The

system we are considering is shown in Fig. 2.5.
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Figure 2.5: The scenario under consideration, in which two blocks of logic, A and C, are
separated by a third logic block, B, and the number of connections between A and C must
be determined. In a 3DIC, block B would consist of all logic planes between tiers A and
C.

We can quickly adapt Eqs. (2.47) and (2.49) to determine the number of connections

between any two tiers. First, we define Ng as the total number of logic gates in the design,

Ntiers as the number of tiers in the 3DIC, and Ns = Ng/Ntiers as the average number of

logic gates on each tier. Then Eq. (2.49) becomes:

TA−C = 2kNp
s (bac + 1)p − kNp

s (bac + 2)p − k(bacNs)
p (2.51)

where bac is the number of layers between tierA and tierC. Now that we have an expression

for the number of connections between two tiers, A and C, we can determine the total

number of vias in the ith layer, Vi, as

Vi =
∑
j 6=i

Ti−j +
∑
j<i<k

Tj−k (2.52)

where the first term represents connections between tier i and all other tiers, and the second

term represents all connections traversing tier i, i.e. connections between tiers below i and
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tiers above i. The total number of vias required in the stack then becomes

Vtot =
∑
i

Vi (2.53)

This result can be quickly and easily calculated by setting up a matrix with each element

i, j corresponding to Ti−j ,the number of connections between tiers i and j. For each i,

the first term in Eq. (2.52) is calculated as the sum of the ith row, and the second term in

Eq. (2.52) is calculated as the sum of the block formed by all elements to the right of the

ith column and above the ith row, as shown in Fig. 2.6. In this example, the cells in blue

are summed to calculate the total number of interconnects terminating on the second tier,

and the cells in red are summed to calculate the total number of interconnects traversing

this tier. By summing these two values, the total number of vias required on the second tier

can be determined. Since the matrix is symmetric, Eq. (2.52) can also be calculated as the

block formed by all elements to the right of the i− 1th column and all elements above the

i− 1th row.

To illustrate the impact of the corrected TSV estimation algorithm, we evaluated Eq. (2.53)

and compared it against the case where vias traversing layers are ignored. As can be seen

in Fig. 2.7, the updated method predicts significantly higher via numbers in tall 3D stacks,

and the old method begins to significantly undercount total via requirements for systems of

8 tiers and greater.

2.2.3 Validation

To validate Eq. (2.53) several netlists were partitoned into multiple tiers via spectral parti-

tioning [57, 58] in order to simulate the process of breaking a 2D design into a multi-tier

3DIC. The rent parameters for each netlist were determined via repeated spectral bipar-

titioning in order to fit the ratio of terminals to gates to the relationship expected from

Eq. (2.47) [54, 59]. Once the rent parameters are extracted, they are used in Eqs. (2.50)

and (2.53) to calculate the expected number of vias required in each tier. These predic-
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Figure 2.6: Graphical illustration of the calculations in Eqs. (2.52) and (2.53) for the
determination of the total via number in the second layer of a 5-tier 3DIC.

Table 2.1: Comparison to actual data
Netlist Cells Nets k p

ibm01 12752 14111 21.9 0.45
industry2 12637 13419 16.6 0.59
industry3 12637 12637 11.2 0.59
cf cordic 22023 30962 4.86 0.76

tions are compared to the actual number of connections between tiers, which is found by

bipartitioning the netlist into an appropriate number of levels, and ordering the partitions

vertically to minimize the total number of vias required for interlayer interconnection. In

this analysis, off-chip IOs were neglected, and only intra-netlist connections were consid-

ered. The exclusion of off-chip connections may lead to a slight undercounting of the total

via requirements in the design, as, were these netlists to be implemented as freestanding

3DICs, signals originating within the 3D stack which must be routed to the outside world

must necessarily pass through every tier between their origin and the off-chip interconnects

at the bottom tier of the design. The details of the netlists used for characterization are

presented in Table 2.1.

The key improvement of the new method of TSV prediction over the previous meth-
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Figure 2.7: Comparison of the predicted total via number using the updated TSV predic-
tion method (solid lines) and the previous method (dashed lines) for hypothetical systems
with 10M (blue), 100M (red), and 1B (green) gates.

ods is the more complete accounting of through-tier vias, which have previously been ne-

glected. The total TSV requirements under the old and new TSV methods are compared

against the empirical TSV estimates for each netlist in Figs. 2.8 to 2.11. In all cases, the

overall trend of the new method better matches the empirical trend as the number of logic

tiers increases. The old method typically undercounts the overall TSV requirements sig-

nificantly. The data are examined in greater detail in Figs. 2.12 to 2.15, in which the via

requirements within each tier within a particular 3D implementation of each design are

compared. In these cases we typically see higher intertier via requirements in the central

tiers, which must support connections between the greatest number of adjacent tiers. The

results for the largest netlist, cf cordic, are further broken down in Fig. 2.15, in which this
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Figure 2.8: Comparison of the actual and expected total via requirements for the ibm01
netlist in hypothetical 3D configurations ranging from two to sixteen tiers.

netlist is examined in four-, eight-, sixteen-, and thirty-two-tier configurations. The im-

pact of via undercounting clearly increases significantly as the degree of 3D integration

increases; for shallow 3D stacks of up to four tiers, the impact of via undercounting does

not appear to be significant, but it quickly becomes more relevant as the number of stacked

tiers increases beyond eight.
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Figure 2.9: Comparison of the actual and expected total via requirements for the industry2
netlist in hypothetical 3D configurations ranging from two to sixteen tiers.

Figure 2.10: Comparison of the actual and expected total via requirements for the indus-
try3 netlist in hypothetical 3D configurations ranging from two to sixteen tiers.
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Figure 2.11: Comparison of the actual and expected total via requirements for the cf cordic
netlist in hypothetical 3D configurations ranging from two to sixteen tiers.

Figure 2.12: Comparison of the actual and expected via requirements on each logic tier
for the ibm01 netlist in hypothetical 3D configurations ranging from two to sixteen tiers.
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Figure 2.13: Comparison of the actual and expected via requirements on each logic tier
for the industry2 netlist in a hypothetical 3D configuration with sixteen logic tiers.

Figure 2.14: Comparison of the actual and expected via requirements on each logic tier
for the industry3 netlist in a hypothetical 3D configuration with sixteen logic tiers.
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Figure 2.15: Comparison of the actual and expected via requirements on each logic tier for
the cf cordic netlist in hypothetical 3D configurations of 4, 8, 16, and 32 tiers. In all cases
the old TSV estimation method significantly undercounts the TSV requirements throughout
the design, especially in the central tiers.
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CHAPTER 3

A VIRTUAL PLATFORM FOR 3D AND 2D IC DESIGN SPACE EXPLORATION

3.1 Introduction

Economic and physical challenges to transistor scaling are driving interest in 3D integra-

tion, but uncertainty regarding the fabrication costs and system-level tradeoffs of 3D in-

tegration complicate the design of three-dimensional integrated circuits (3DICs). Projec-

tions of 3DIC cost and performance are further impacted by the strongly-coupled nature

of communication, power delivery, and thermal management in 3DICs. The 3DIC de-

sign space is complex, as 3DIC design encompasses a broad spectrum of possible design

choices and integration methodologies, ranging from 2.5D interposer-based integration all

the way to finely-grained monolithic 3DICs, as shown in Fig. 3.1, each with unique costs

and strengths.

Additionally, different technologies must be evaluated for use in both 2D and 3DICs.

Low-k dielectrics can be used to reduce the parasitic capacitances in the wiring stack,

simultaneously improving RC delay and reducing the power consumption of the wiring

network. Alternate wiring materials are also being considered to improve the RC delay

Figure 3.1: There are many potential configurations for 3DICs, each with their own costs
and advantages. Designers must manage the complexity of the 3DIC design space in order
to achieve higher performance and lower cost systems.
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of on-chip interconnects, as well as to reduce the impact of electromigration [60]. Liquid

cooling can be used to mitigate the thermal challenges in high performance 3DICs [33,34].

In order to understand when a 3D system might have advantages over a 2D system, all

of these factors must be modeled simultaneously. Performing these coupled simulations

with high fidelity is computationally intensive, however, rendering thorough exploration of

the 3DIC design space challenging. Compact tools have been developed to estimate 2DIC

performance [32,61], but no analog exists for 3DICs. Additionally, the existing 2D tools do

not model power delivery or heat extraction, which are likely to be challenges for 3DICs.

The novel contribution of this work is the development of a compact tool capable of

rapidly simulating the properties of 3DIC on-chip signal and power delivery networks. The

simulator estimates the power consumption, simultaneous switching noise, and thermal

profile of 2DICs and 3DICs, and enables the investigation of trends in performance and

power consumption as materials, devices, and integration methodologies are varied. The

details of the on-chip wires, TSVs, power delivery network, and steady-state thermal pro-

file are all modeled in order to develop a self-consistent picture of the overall 3D system

performance. The simulator is intended to help answer what-if questions and to guide more

precise investigations into the details of 3DIC physical design.

The organization of this paper is as follows: in Section 3.2 the details of the models used

and their interactions are presented; in Section 3.3 the simulator is benchmarked against

wire pitch and TDP data from several commercial processors; in Sections 3.4 and 3.5 the

simulator is used to investigate the impacts of advanced technologies on a 32nm CPU

core. Specifically, the impacts of the interlayer dielectric, wire material, and 3D stacking

on the power consumption, power supply noise, and metal layers required for routing are

investigated.

3.2 Simulation framework

The simulation platform consists of the following:
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1. 3D wire length distribution which accounts for TSV area

2. Metal layer pitch determination algorithms capable of handling alternate wiring ma-

terials

3. An optimal repeater insertion scheme

4. A power supply noise model for 3DICs

5. A finite difference thermal module for analyzing the thermal impacts of 3D integra-

tion

The simulation flow is shown in Fig. 3.2. First, the distribution of wire lengths in the

system is estimated, which is in turn used to determine the number of wiring tiers required

for signal routing, the wire pitch on each tier, and the number of repeaters needed to meet

the delay constraint. In order to model the on-chip interconnects in a compact manner,

the system is modeled as a homogeneous block of randomly interconnected logic. This

assumption is commonly used with stochastic wire length models for rapid estimation of

on-chip interconnect properties, at the cost of reduced insight into fine-grained design de-

tails [25,31,32]. In heterogeneous systems each block is modeled separately, and the results

are assembled into an overall power density map of each tier in the design to determine the

thermal profile throughout the stack. In order to better predict the performance of such

systems, the method of [56] can be used to homogenize a heterogeneous system.

Once the parameters of the on-chip interconnects are known, their power consumption

can be estimated. The transistor dynamic and leakage power is also calculated to deter-

mine the overall power requirements for the design. The total power consumption is used

in conjunction with the TSV and package pin resistance and inductance to estimate the

simultaneous switching noise in the power delivery network. Additional power pads and

TSVs are inserted until the noise drops to acceptable levels. At this point the tool checks

that the total TSV area does not exceed a user-specified limit; if TSV demand outstrips
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Figure 3.2: Block diagram of the simulation platform execution flow.

available area, the TSV diameter is reduced and the interconnect and power modules are

rerun.

Once the design passes the TSV area check, the thermal module is used to estimate the

maximum temperature in the 2D or 3D design. In order to do this, the material parameters

of the die, wiring tiers (including wires and interlayer dielectric), TSVs, and interstitial lay-

ers are input into a finite difference thermal simulator, along with a heat transfer boundary

condition representing the heatsink. If the maximum temperature in the stack exceeds a

user-defined limit, the clock frequency is reduced and the previous modules are rerun until

the maximum temperature is sufficiently reduced. As alternate means of power reduction,
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the logic activity factor can also be reduced or the wire or interlayer dielectric materials be

modified. The final design parameters are reported once the constraints on temperature and

TSV area are satisfied.

The key limitations of this simulation platform are linked to the assumptions used to

model the on-chip interconnects. Treating a design as a homogeneous block of randomly-

interconnected logic allows rapid simulation of the aggregate properties of the on-chip

wires, but limits visibility into the inner workings of the design. Off-chip IO and intercon-

nections between blocks in heterogeneous systems are also not modeled, as design-specific

information would be needed for accurate modeling. These omissions lead to underesti-

mation of the system power, and limit the range of validity of the simulator, but they also

enable the consideration of a wide range of system types without detailed design informa-

tion.

3.2.1 Interconnect modeling

The on-chip interconnect network accounts for a significant fraction of the overall power

consumption in many logic designs [32]; accordingly, accurate determination of the param-

eters of the on-chip interconnect network is crucial for developing reasonable estimates of

the overall power consumption and operation frequency of an integrated circuit. Specifi-

cally, the number of metal layers used for wiring must be estimated, as well as the pitch of

the wires on each level, in order to determine the overall wiring capacitance, which is a key

factor in the maximum wire delay and power consumption.

Stochastic wire length models have been shown to be effective tools for the rapid pre-

diction of interconnect properties in 2DICs [25, 32] and 3DICs [31], but the impact of

TSV-induced gate-blockage in 3DICs was not considered until [62] introduced a correction

to account for finite TSV size. The method of [62] requires brute-force calculation, how-

ever, which is too computationally intensive for rapid simulation. To address this issue, a

compact correction to the wire length distribution was introduced in [44], which is used in
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this work. Once the wire length distribution is known, the wire pitch and number of metal

layers are determined using a bottom-up wire scaling technique [61], and a delay-optimal

repeater insertion scheme is used to determine the size and number of repeaters required to

meet timing constraints [63].

The impact of surface scattering and grain boundary scattering on wire resistivity are

incorporated into the wire sizing algorithm with a combined Mayadas-Shatzke and Fuchs-

Sondheimer (MS+FS) model, with specularity of 0.55 and backscattering probability of

0.43 [10]. The metal grain size is approximated as the smallest dimension of each wire.

3.2.2 Power supply noise modeling

Power supply noise must be suppressed to ensure reliable system operation, but power de-

livery in 3DICs is complicated by the limited area available for routing power interconnects

between tiers and by the additional parasitic resistance and inductance of the TSVs used for

power delivery. In order to determine the maximum allowable TSV diameter, the number

and size of the power delivery TSVs must be estimated. The analytic 3DIC power supply

model developed in [64] is used to estimate the simultaneous switching noise (SSN) in the

3D stack as a function of the number and size of the power delivery TSVs. The model uses

the periodicity of the power grid to extrapolate the worst-case SSN in the system from the

detailed frequency-domain behavior of a single power delivery unit cell. Power is assumed

to be delivered via a regular rectangular array of power and ground pads or TSVs connected

by planar power delivery wires. An inverse Laplace transform is used to convert the fre-

quency response of the power delivery network into the temporal response, from which the

worst-case noise can be easily extracted [65].

3.2.3 Thermal modeling

Thermal issues are one of the greatest challenges in 3DIC design. In order to design a

thermally robust 3D system, the relationships between device technology, system perfor-
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Figure 3.3: The geometry used in the thermal module. TSVs are individually meshed, in
order to better capture the impact of 3D heat transport.

mance area constraints, and packaging materials and technology must be explored. To that

end, we utilize a fast and accurate finite difference thermal model, described in [66], with

a non-conformal meshing strategy described in [67].

The thermal configuration considered in the simulation tool is shown in Fig. 3.3. One

or more dice are assumed to be stacked vertically atop an interposer (which may be ei-

ther a conventional organic package substrate, or a silicon or glass interposer). Each die

is separated into three regions: 1) the bulk silicon, 2) the BEOL, which is modeled as the

volume-weighted average of the thermal conductivities of the wiring material and the in-

terlayer dielectric, and 3) the underfill material between each die. The power dissipated by

each die is applied as an excitation at the boundary between the bulk silicon and the BEOL.

TSVs are modeled within the bulk of any dice below the top die in the stack. Each exter-

nal boundary is modeled with a convective boundary condition; within-package boundaries

are typically given a low heat transfer coefficient of 5 mW/m2K, while the top and bottom

surfaces are given higher values to reflect the cooling method used.

The accuracy of this finite difference module was assessed in [67], in which the perfor-

mance of the finite difference scheme was compared against finite element ANSYS models
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Table 3.1: Comparison to actual data
Signal Wire Tiers TDP Predicted

Processor Node Actual Predicted (W) Power (W)
E6850 65nm 8 8 65 60.27 (-7.3%)
E8600 45nm 82 8 65 63.62 (-2.1%)
i7 880 45nm 82 7 95 105.56 (11.1%)
i7 6801 32nm 82 6 73 52.74 (-27.8%)

i7 2700k 32nm 82 8 95 91.80 (-3.3%)
1 Multi-chip package with 32nm CPU die and 45nm gpu/support

die.
2 Design has one additional global metal layer for power distri-

bution.

of the same structure. The finite difference model was found to match the ANSYS results

with a maximum error of 2.7%.

3.3 Validation

The simulator was validated by comparing its predictions against published data for Intel

processors ranging from the 65nm node to the 32nm node [68–75]. For each test case, the

chip area, number of logic transistors, number of memory transistors, and size and shape

of the cores and memory blocks were gathered from published data. Logic cores were

simulated with a Rent exponent of 0.6, while memory cores used a value of 0.4, and GPUs

were simulated with a Rent exponent of 0.5 [54]. Each block was simulated separately to

determine the number and pitch of metal levels required for routing and the total power

consumption of each block. The pitch and number of metal layers used for the overall de-

sign were then set by the block which required the greatest number of wiring tiers (typically

the CPU core). This information, along with the geometry and power requirements of each

block was then used by the thermal module to determine the maximum temperature in the

system.

The expected wire pitch, number of metal layers, power consumption, and maximum

junction temperature generated by the simulator have been compared in Table 3.1. With
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Figure 3.4: Actual and expected wire pitch in a Core i7 2700k processor.

the exception of the Core i7 680 test case, the tool shows reasonable agreement with the

published data for these processors. The 45nm and 32nm test cases all have a total of 9

metal layers, but in all cases the wires on the top layer are sized very large and used for

power and clock delivery, rather than signal routing. Since the interconnect estimation

module is used estimate the size and pitch of signal wires only, the top metal layer in these

designs is not counted for the purpose of signal wire pitch validation. Instead, the upper

wire tier is modeled in the power delivery simulation module of the simulator, but without

data on the power noise margin and the number of power and ground pads used in these

designs, detailed validation of the power delivery module is not possible for these test cases.

In addition to the number of metal levels, the simulator accurately predicts the wire pitch

in each routing tier, as shown in Fig. 3.4.

The simulator underestimates both the number of wiring tiers and the overall power
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consumption for the Core i7 680 test case; this error could be due to the fact that the Core

i7 680 is the only design implemented as a multi-chip module (MCM), with a 32nm CPU

die integrated with a 45nm GPU die in the same package. The simulator currently does

not estimate the power required for inter-block communication in heterogeneous systems.

While this will affect the power estimates for all test cases, the power required for com-

munication between the two separate dice in the Core i7 680 is likely much larger than the

power requirements for communication between GPUs and logic cores integrated on the

same die.

The value of this simulation platform lies in its ability to consider many different effects

very rapidly, enabling investigation of trends in the performance and power consumption

of a reference design over a wide range of technologies and configurations. While the

worst-case error in these benchmarks is relatively high (27.8%), the typical error is much

lower, and this level of accuracy is sufficient for the investigation of power and performance

trends in 2D and 3DICs. In the subsequent sections the simulator is used in this manner

to investigate the impacts of material, technology, and packaging innovations on the power

consumption and performance of 2D and 3DICs.

3.4 2D: the impact of materials innovation

One path towards increasing system performance is to achieve improvements in the wiring

materials. The permittivity of the interlayer dielectric (ILD) directly impacts the parasitic

capacitance of the on-chip wires, which in turn impacts the wire RC delay and power

consumption. Additionally, decreasing the RC delay reduces the need for power-hungry

repeaters.

In order to investigate the potential of ultra low-k (ULK) ILD materials, a 32nm Sandy

Bridge Core i7 was simulated with a range of different ILD permittivities, ranging from

3.9 (silicon dioxide), all the way down to 1 (vacuum). Figure 3.5 shows that the number

of metal layers required to fully route the Sandy Bridge processing core can be reduced
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Figure 3.5: Impact of interlayer dielectric (ILD) permittivity on the number of metal layers
required to route the wires in a Sandy Bridge Core i7 2700k.

from 8 to 6 if the relative dielectric constant of the ILD material can be brought below

1.3. Overall power consumption increases with ILD permittivity, as shown in Fig. 3.6, and

significant power reductions are possible with ULK materials. The power reduction comes

from both a reduction in wire power, as well as a reduction in the number and size of the

repeaters needed to meet timing constraints.

As the critical dimensions of the smallest on-chip wires have decreased, electromi-

gration has become a reliability concern at advanced process nodes [76, 77]. In order to

address electromigration challenges at advanced process nodes, alternate materials may be

required, potentially impacting signal performance, power consumption, and the number

of metal layers required to fully route a design [60]. It is likely that only the lowest metal

levels would use alternate materials [78].

To investigate the impact of alternate metals on routing, a 7nm Sandy Bridge CPU test
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Figure 3.6: Impact of interlayer dielectric (ILD) permittivity on the power consumed by
wires and repeaters in a Sandy Bridge Core i7 2700k core.

case was constructed by scaling down the gate pitch, minimum wire pitch, transistor size,

and all other lengths in the 32nm Sandy Bridge by a factor of 4.57X (32/7). Two 7nm test

cases were considered: 7nm A, in which all wires are composed of an alternate material,

and 7nm B, in which only wires thinner than 25nm are replaced by the alternate material.

The bulk resistivity of the alternate wiring material in both the 32nm and 7nm test cases

was swept from 10 Ωnm (slightly lower than bulk Ag), to 60 Ωnm (slightly higher than

bulk W). As can be seen in Fig. 3.7, higher resistivity metals can significantly increase

the number of metal levels required for signal routing, but this effect can be mitigated by

restricting the use of alternate metals to the lowest wiring tiers. Since the greatest numbers

of wires are routed in the lowest tiers, small changes to their dimensions can have large

impacts on the wiring stack.
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Figure 3.7: Impact of wire resistivity on the number of metal layers required to route the
wires in a Sandy Bridge CPU. Three cases are considered: a) a 32nm Sandy Bridge core;
b) 7nm A, a hypothetical 7nm Sandy Bridge core; and c) 7nm B, in which only wires with
width below 25nm are modified.

3.5 3D: power reduction without exotic materials

3.5.1 Reducing power consumption

Implementing a design in 3D can greatly reduce the average length of the on-chip intercon-

nects, leading to reductions in the average delay and power consumption of the signaling

network [31]. In order to examine the impacts of 3D integration, a single 18.5 mm2 CPU

core from a 32nm Sandy Bridge Core i7 2700k is examined throughout this section. Unless

otherwise noted, we assume a TSV aspect ratio of 20:1, and require that the TSVs use less

than 10% of the total die area. Typically, 3DIC designs limit the TSV area to 1% or less to

minimize the cannibalization of active area, but we have relaxed that limit here for illustra-

tive purposes. In order to examine the impacts of 3D integration, a single CPU core from
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Figure 3.8: Impact of block folding on power consumption and power density of a single
32nm Sandy Bridge core.

a 32nm Sandy Bridge Core i7 2700k is examined throughout this section. We consider a

scenario in which logic gates and blocks can be placed on any tier, and in which TSVs are

used as point to point interconnects. The core is assumed to be partitioned into N equal

pieces, which are then stacked vertically.

Significant power savings can be obtained by moving to a 3D design, as shown in

Fig. 3.8, though the power reduction comes at the cost of increased areal power density,

ultimately placing more stress on the heat sink. The design implications of the increased

power density of 3DICs will be discussed further in Section 3.5.3. It is important to note

that 3DICs reduce the on-chip communication power, fundamentally improving the energy

efficiency of the system, as can be seen in Fig. 3.9.

In order to fully route a 3DIC, space must be allocated on each tier for TSVs. Since

TSVs consume space that could be used for logic, it is desirable to minimize the fraction of
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Figure 3.9: Fraction of power consumed for on-chip communication as a function of 3D
configuration and operating frequency.

chip area consumed by TSVs. TSV diameter can be reduced by either increasing the TSV

aspect ratio or by die thinning. Thicker logic tiers are attractive due to their higher me-

chanical stability, but they reduce the wire length advantages of 3DICs. TSVs are typically

limited to diameters of 5-10µm and aspect ratios between 5-20:1 [34, 79].

The impact of die thickness on 3DIC power consumption is examined in Fig. 3.10. In

this figure, we consider a single 32nm Sandy Bridge core folded over 2, 4, and 8 tiers. All

connections between tiers are assumed to be point-to-point, and TSV number is determined

using the method introduced in Section 2.2. In order to realize the greatest power reduction

from 3D integration, the active layers should be as thin as possible, to maximize the number

of long wires that can be shortened by block folding. When stacking large numbers of dice,

the power gains from 3D integration can be entirely offset by the power consumption of

the large TSVs required for 3D stacking. This highlights the need for aggressive scaling of

47



Figure 3.10: Impact of die thickness on power consumed by a single 32nm Sandy Bridge
core implemented in 3D. Folding the logic core over additional tiers tends to reduce the
power consumption of the core when small TSVs can be used.

TSV diameters, and suggests that monolithic-scale 3D integration may yield the greatest

potential improvement in overall system power consumption. It is important to note that

this is an extreme example, and that this configuration is not necessarily representative

of heterogeneous 3D integration techniques, in which different devices (e.g. CPU and

DRAM) are integrated into one 3D stack. In heterogeneous 3D stacking scenarios fewer

intertier IOs would be required, and TSVs in such a stack would be replacing long, slow,

and power-hungry board-level traces, rather than on-chip wires.

3.5.2 Power delivery

Power delivery in 3DICs is challenging, as a high performance 3DIC may have a signifi-

cantly higher areal power density than an equivalent 2D chip, while simultaneously having

less space available for routing power delivery resources. Additionally, power must be
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Figure 3.11: Impact of interlayer dielectric material, substrate thickness, and 3D integra-
tion on power pad/TSV requirements in a 3D Sandy Bridge CPU core.

delivered to each tier through TSVs, increasing the parasitic resistance and inductance of

the power delivery network. The number of power connections required by each tier is

determined by the power draw and power density of the system, which depends upon the

dielectric properties and the substrate thickness (for 3DICs). Both 2D and 3D systems

benefit from the use of ULK interlayer dielectrics, and the use of thin substrates in 3D

configurations can further reduce the demands on the power supply network.

In order to explore these effects, the Sandy Bridge test case was simulated with sev-

eral substrate thicknesses and dielectric permittivities, in order to determine the number of

power delivery pads or TSVs needed to reduce the simultaneous switching noise to below

15% of the nominal supply voltage. The results are presented in Fig. 3.11. For two-tier

stacks only a slight increase in power TSVs is observed over the 2D case, but the eight-tier

implementation requires roughly an order of magnitude more power connections than the
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Figure 3.12: Power TSV requirements for a single Sandy Bridge core as a function of 3D
configuration and area allocated for decoupling capacitors.

2D design. The ILD permittivity has a strong impact on the power delivery requirements,

as it directly affects the power consumption of the on-chip communication network. The

thickness of the 3DIC logic tiers is not a limiting factor for 2-tier designs, but 4- and 8-tier

designs can realize nearly as much benefit from die thinning as from ULK dielectrics, due

to the reduced power consumption of thin-tier 3DICs (Fig. 3.10).

Another method to reduce power supply noise is to integrate decoupling capacitors onto

the die to compensate for the inductance of the power delivery network. While this practice

can improve power quality, it also sets up a tradeoff between utilizing die area for logic and

power delivery. To explore this tradeoff, the 32nm Sandy Bridge test case was simulated

in 2D and 3D configurations with varying amounts of silicon area allocated for decoupling

capacitors. The power TSV diameter is assumed to be 10 µm and the thickness of each die

in the 3D stack is assumed to be 10 µm to investigate the potential of extreme die thinning.
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While handling thinned wafers can be challenging, alternate integration schemes in which

wafers are bonded and subsequently thinned could enable the stacking of such thin layers

without the need for modified wafer handling processes [80]. Alternately, monolithic 3DIC

fabrication techniques could enable designs with extremely small intertier distances [18].

For simplicity, the impact of electromigration on power delivery TSVs is ignored. As can

be seen in Fig. 3.12, increasing the decoupling capacitance can significantly reduce the

number of power pads or TSVs, but achieving high decoupling capacitance densities could

be challenging. Even with the use of decoupling capacitors, a more stringent lower bound

on power TSV number may be set by the need to keep the current density carried by each

TSV low enough to avoid electromigration.

3.5.3 Thermal management

Thermal management is a key challenge for 3DICs. While the total power dissipation of

an IC is expected to decrease as the system is partitioned into increasing numbers of layers

(as shown in Fig. 3.8), the areal power density will still increase as tiers are stacked atop

one another, leading to increased stress on the cooling system. In order to demonstrate

the thermal capabilities of the simulation tool, and to quantify the thermal impact of 3D

stacking, the performance of a single 32nm Sandy Bridge CPU core is examined in both

2D and 3D configurations, and with both air-cooled and liquid-cooled heat sinks. In all

cases the heat sinks are located on the back side of the top die. The air-cooled heat sink

has a heat transfer coefficient of 1.83 W/cm2K and the fluidic heat sink has a heat transfer

coefficient of 4.63 W/cm2K [81]. Boundaries internal to the package are assigned a heat

transfer coefficient of 0.005 W/cm2K. The thermal conductivities used for the materials in

the stack are presented in Table 3.2.

The CPU core was simulated in each configuration to find the maximum operating

frequency which could be maintained while keeping the stack below 70◦C. In order to focus

solely on the thermal aspects of 3D stacking we assumed that the system was thermally-
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Table 3.2: Material parameters used for thermal simulation
Material Thermal Cond. (W/mK)
Silicon 149
Copper 400

Underfill 0.3
Microbumps 60

Silicon Dioxide 1.38

limited, and ignored other factors which could limit the operating frequency of the chip,

such as clock distribution. The power consumed by the cooling solution is ignored, in order

to isolate intrinsic die-level effects from the details of the heat sink.

As can be seen in Fig. 3.13, the maximum frequency decreases steadily as the CPU is

folded across more tiers, as the increased power density (Fig. 3.8) of the system increases

the strain on the cooling system. In all cases, the microfluidically-cooled cores can run

faster than the air-cooled cores. With a more aggressive cooling solution the thermally-

limited logic core considered here can be folded over up to four tiers while still achieving

performance parity with an air-cooled 2D implementation.

It is important to note that the configuration considered here represents the most ther-

mally challenging 3D integration scenario: the stacking of high performance logic. Sys-

tems which are not thermally-limited will be able to take greater advantage of 3D integra-

tion to increase performance and decrease power consumption. Additionally, the perfor-

mance of thermally-limited 3D stacks could be further improved by integrating microfluidic

coolers into each die in the stack to thermally decouple each tier, allowing each cooler to

efficiently extract heat dissipated in adjacent tiers. To examine the potential impact of in-

tertier cooling, we simulated the test case again, but assumed that all heat from each logic

tier was removed by a hypothetical cooling solution placed between each die. We further

assumed that the system was solely thermally-limited – in a real system it is likely that

power delivery and timing constraints would impose additional performance constraints,

but the value of this exercise lies in identifying the full potential of thermally-unbound 3D

integration. As can be seen in Fig. 3.14, significant performance increases could be attained
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Figure 3.13: Maximum clock frequency of 2D and 3D 32nm Sandy Bridge CPU cores
limited to 70◦C under air cooling (blue) and liquid cooling (red).

by moving to a 3D configuration. The performance gains in this case come from significant

reduction in on-chip communication power, as discussed in Section 3.5.

As intra-stack heat transfer is a critical concern in 3DICs, we also investigated the im-

pact of varying the logic tier thickness on maximum performance. The same Sandy Bridge

test case was simulated in 1, 2, 3, and 4-tier configurations, with substrate thicknesses

of 100 nm, 1 µm, and 100 µm, representing 3D integration scenarios ranging from fine-

grained monolithic 3D integration, to conventional TSV-based die stacking. As before, the

design is assumed to be thermally constrained, and the maximum clock frequency which

results in an operating temperature below 90◦C is found. As shown in Fig. 3.15, increas-

ing the substrate thickness degrades the thermal performance of the stack, resulting in a

reduction in maximum attainable performance, due to the additional thermal resistance

introduced by the thicker logic tiers, as well as the increased power consumption of the
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Figure 3.14: Maximum clock frequency of 2D and 3D 32nm Sandy Bridge CPU cores
limited to 70◦C, assuming heat can be removed from between the logic tiers.

overall device (as discussed in Section 3.5).

3.6 Impact of manufacturing constraints on monolithic 3DICs

Monolithic 3D integrated circuits (3DICs) are an attractive option for extending the den-

sity and performance gains demanded by Moore’s Law without requiring additional 2D

scaling [16–18]. Monolithic 3DICs achieve ultrahigh density vertical integration by dra-

matically reducing the distance between active tiers; in typical 3DICs, each die in the stack

will be between 10-100 µm thick, whereas monolithic 3DICs are expected to have intertier

distances of 0.1-1 µm. Reducing the intertier distance allows the size of the intertier vias

to be dramatically reduced, enabling ultrahigh density vertical integration. Unfortunately,

existing monolithic 3D (M3D) integration schemes require high-temperature processing to

form the upper layer(s) of transistors, necessitating novel complex processing and materi-
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Figure 3.15: Maximum clock frequency of 2D and 3D 32nm Sandy Bridge CPU cores
implemented with 100nm (blue), 1 µm (yellow) and 100µm (red) substrate/logic tier thick-
nesses. The thermal limit in each case is 90◦C under air cooling. The maximum attainable
clock frequencies are normalized to the 100nm single-tier case.

als to ensure interconnect and transistor reliability. To address this challenge, bottom-tier

wires and interlayer vias (IVs) in M3D schemes are typically fabricated from tungsten or

some other thermally-resistant material. As the resistivity of W is much higher than that of

Cu, it is likely that the use of W wires and IVs will impact signal and power quality. No

studies of the impact of the use of W wires on routability or power quality of monolithic

3DICs have been performed, however. The novel contribution of this work is the investi-

gation of the impact of wire and power via resistivity on routing and power quality with a

compact electrical and thermal 3DIC simulation tool [82]. The structure of this paper is as

follows: in Section 3.6.1 the simulation methodology used for this work is discussed; in

Section 3.6.2 the impact of wire resistivity on signal routing in monolithic 3DICs is investi-

gated; in Section 3.6.3 the impact of intertier via resistivity on power delivery in monolithic

55



3DICs is discussed.

3.6.1 Methodology

We use a compact 3DIC simulation tool developed in [82] to investigate the impact of al-

ternate wire resistivities on power delivery and signal routing in monolithic 3DICs. The

simulation tool incorporates a 3DIC stochastic wirelength model [44], wire sizing algo-

rithms [30], an optimal repeater insertion algorithm [63], a frequency domain 3DIC power

delivery simulator [65] and a finite difference thermal module [67], and is described in

greater detail in [82]. The simulator requires only high-level parameters describing the sys-

tem of interest, such as the number of transistors in the design, the Rent parameters [54],

the target clock frequency, the minimum wire pitch, the average gate pitch, the minimum

inverter resistance and capacitance, and the wiring material resistivity and size parameters.

From these relatively coarse descriptors, the simulator predicts the number of metal levels

needed for routing, as well as the overall power consumption and simultaneous switching

noise of the design.

In order to predict the impacts of alternate wiring materials on industrially-relevant

designs, we use the 32nm Sandy Bridge CPU core test case benchmarked in [82] as a

foundation for the modeling efforts presented here. To investigate the impacts of scaling,

all physical dimensions in the design (transistor width, gate size, minimum wire pitch, and

so on) are scaled down linearly. To investigate the impacts of wiring materials, the wire

resistivity is swept from 10 Ωnm (slightly lower than bulk Ag) to 60 Ωnm (slightly higher

than bulk W). These values are chosen to develop a picture of the overall wiring material

solution space. In this work we consider only conventional metal wires; exotic interconnect

structures such as graphene nanoribbon or carbon nanotube interconnects are not included

in this analysis.
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Figure 3.16: Number of interconnect tiers per die as a function of wire resistivity for a
32nm monolithic 3D Sandy Bridge CPU core.

3.6.2 Signal routing

Monolithic 3D concepts presented thus far typically utilize tungsten wires for lower-tier

metallization [18]. In order to quantify the impact of this modification on a typical design

we simulated a single CPU core from a 32nm Intel Sandy Bridge Core i7 using the sim-

ulation framework described in [82]. Conventional 2D designs were considered, as well

as monolithic 3D designs with up to four logic tiers. In each case a modified optimal re-

peater insertion scheme is used: repeaters are inserted starting with the longest wires, and

are continually inserted until either a) no wires remain which would benefit from repeater

insertion, or b) the die area required for repeaters reaches 20%. As can be seen in Fig. 3.16,

additional wiring tiers are necessary as the wire resistivity increases. A 2D design using
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Figure 3.17: Number of interconnect tiers per die as a function of process node for a 32nm
monolithic 3D Sandy Bridge CPU core implemented with different wiring materials. The
2D design using W wires becomes unroutable at the 5nm node.

copper wires is projected to require 8 signal routing tiers, which is in line with published

data [73], whereas the same design using tungsten wires would require 11 signal tiers. Im-

plementing the same design in 3D can significantly reduce the number of metal tiers per

die, but the use of high-resistivity metals still requires additional signal routing tiers.

In order to examine the impacts of scaling, the 32nm Sandy Bridge test case was used as

a template to create equivalent test cases at the 22nm, 14nm, 10nm, 7nm, and 5nm nodes by

linearly scaling the physical dimensions of the chip, transistors, and wires in the design. In

this case the two extremes of copper and tungsten were compared for both single-tier (2D)

and two-tier (3D) designs. As can be seen in Fig. 3.17, the designs using tungsten wires

always require more interconnect tiers than the designs using copper wires. The number
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Figure 3.18: Number of interconnect tiers per die as a function of number of 3D tiers across
different process nodes, assuming copper wires are used. White ares indicate designs which
were considered unroutable.

of metal levels required for routing the tungsten designs diverges sharply at the 7nm node,

and the 2D tungsten-based design becomes unroutable at the 5nm node.

The 3D designs both require significantly fewer metal levels for signal routing, due to

the decrease in wire length achieved by moving from 2D to 3D. The increase in wiring

tiers with scaling is attributed to the heightened consumption of repeaters as both the resis-

tance and resistivity of the on-chip wires increase. The relationship between scaling, wire

resistivity, and routing tiers is further examined in Figs. 3.18 and 3.19, which compare the

number of metal levels required for signal routing in monolithic 3DICs using copper wires

(Fig. 3.18) and tungsten wires (Fig. 3.19). Designs using tungsten wires require signifi-

cantly higher numbers of signal routing tiers, and quickly become unroutable at advanced

59



Figure 3.19: Number of interconnect tiers per die as a function of number of 3D tiers across
different process nodes, assuming tungsten wires are used. White ares indicate designs
which were considered unroutable.

process nodes, suggesting that monolithic 3DICs using tungsten wires may suffer from

interconnect congestion issues.

3.6.3 Power delivery

Modern integrated circuits require highly stable power supplies for nominal operation, ne-

cessitating careful design of the on-chip power delivery network to minimize voltage noise

and instability. The challenge of power delivery is exacerbated in 3DICs by the need to

deliver power to multiple logic tiers through intertier vias, which introduce additional par-

asitic resistance and inductance into the power delivery network.

Further complicating 3DIC power delivery is the need to minimize the die area con-
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sumed by intertier vias. While this problem is most keenly felt in conventional 3DICs,

which have through-silicon via (TSV) diameters of roughly 5-10 µm, even monolithic 3D

systems must trade potentially-useful silicon area for intertier vias. Since monolithic 3D

systems are expected to use tungsten intertier interconnects rather than copper, power vias

in monolithic 3DICs will introduce additional parasitic resistance to the power delivery

network.

In order to gauge the impact of via resistivity on power delivery in monolithic 3DICs,

we simulated the 32nm Sandy Bridge test case in 2D and 3D configurations with via resis-

tivity ranging from 10 Ωnm to 60 Ωnm. The tier thickness was assumed to be 1 µm, and the

intertier via diameter was assumed to be 50 nm. In this case we assumed that both signal

and power vias would have the same dimensions, as this represents the simplest fabrication

scenario, and that a maximum of 1% of the total die area could be allocated to intertier vias,

to minimize the cannibalization of active silicon.

As can be seen in Fig. 3.20, power via requirements increase steadily as a function of

via resistivity for all configurations considered. Switching from copper to tungsten vias has

roughly the same impact to the power via requirements as partitioning the design into an

additional tier. Importantly, even the 4-tier design using 60 Ωnm vias requires less than 1%

of the total via area for power delivery, suggesting that monolithic 3DICs will not require

careful via management.

3.7 Conclusions

A compact simulation tool for 2D and 3D IC pathfinding was developed and used to ex-

amine the impacts of advanced technologies on system performance. The tool incorporates

models for signal delivery, power supply noise, and thermal performance in 2D and 3D ICs,

and was validated against wire pitch and power consumption data for recent commercial

microprocessors. The simulation tool is available upon request.

The simulation results suggest that high performance 3DICs may require large numbers
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Figure 3.20: Fraction of maximum via area occupied by intertier power vias in a 32nm
monolithic 3D Sandy Bridge CPU core, assuming that a maximum of 1% of the total die
area is allocated for intertier signal and power vias.

of power delivery TSVs, due to the TSV parasitics introduced into the power delivery

network, as well as the increased power density of the 3D cores. Die thinning and low-k

dielectrics are expected to be effective tools for reducing the power consumption and power

TSV requirements of high performance 3DICs. The results suggest that 3DICs should

exhibit greater energy efficiency than their 2D counterparts, though thermally-limited 3D

designs may require more aggressive cooling solutions.

Additionally, we have investigated the impact of wire resistivity on signal routing and

power delivery in monolithic 3DICs by simulating the number of metal levels and num-

ber of power delivery vias required by a hypothetical monolithic 3D Sandy Bridge CPU

core. The use of high-resistivity metals significantly increased the number of metal lev-
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els required for signal routing, especially at advanced process nodes. While the number

of power delivery vias required for stable operation increases steadily with via resistivity,

even highly-resistive metals can be used without consuming undue silicon area for power

delivery.
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CHAPTER 4

INVESTIGATING 3DIC THERMAL IMPLICATIONS WITH A TWO-TIER

FUNCTIONAL THERMAL TESTBED

4.1 Introduction

Three dimensional integrated circuits (3DICs) are becoming an increasingly attractive op-

tion for system interconnection due to their potential to unlock ultra-high bandwidth [83–

85]. Applications which require high bandwidth, such as machine learning [86], stand to

benefit significantly from the heterogeneous 3D integration of high performance comput-

ing elements coupled with large quantities of memory. Thermal constraints complicate the

design of such 3D systems, however, as the areal power density of a 3DIC can be much

higher than the power density of the equivalent 2D system, making heat removal and ther-

mal coupling significant challenges in 3D systems [82,87,88]. In order to begin to quantify

the impact of thermal coupling on the performance of functional systems, we have devel-

oped a two-tier air-cooled 3D thermal testbed, shown in Fig. 4.1, composed of an NVIDIA

Tesla K40 GPU [89] and a top die with resistive heaters, which can emulate a variety of

different workloads.

4.2 Design and assembly

The heater die (shown in Fig. 4.2) is composed of four serpentine platinum traces, each

connected to two gold pads. Each quadrant of the die can be controlled and sensed sepa-

rately, enabling the use of nonuniform power maps. The heater coils were fabricated via

a lift-off process and are composed of a 0.2µm-thick layer of platinum. The heater die

was mounted back-to-back (B2B) with the GPU die. Since the heater die was stacked face

up, the heater coils were covered with a layer of Kapton tape to electrically isolate them
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Figure 4.1: Schematic of the air-cooled 3DIC thermal testbed.

from the copper heat spreader, which slightly increased the thermal resistance of the stack.

While a face-to-back (F2B) configuration would better reflect a typical 3D stacking sce-

nario, the lack of clearance between the thermal die and the K40 board necessitated the

B2B stacking approach. The heat spreader and heat sink were removed from the board,

and the copper portion of the heat sink was milled down by approximately 0.5 mm to ac-

commodate the heater die, and an additional 0.5 mm near the edges to accommodate the

control/signal wires for the heaters, as can be seen in Figs. 4.3 to 4.5. Additionally, a por-

tion of the aluminum board chassis was thinned down to allow the heater wires to exit the

region immediately surrounding the GPU.

To improve the thermal contact between the GPU, the heater, and the copper heat

spreader, we used a thin layer of Arctic Silver 5 thermal interface material (TIM) at each

interface. The resistance of each heater was measured over a range of temperatures in a

Baxter Scientific Products DP-22 oven. As can be seen in Fig. 4.6, the heaters show a

linear relationship between resistance and temperature. During operation, the heaters are

driven at a constant power, and their resistances are inferred from the driving voltages and

currents. In order to validate the use of B2B stacking in the testbed, we simulated the ther-

mal performance of a two-tier 3D stack, with a power density of 100 W/cm2 dissipated on
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Figure 4.2: Heater/thermometer die used to emulate a second tier logic or memory device.
Each quadrant can be independently controlled.

the bottom tier, and 10 W/cm2 dissipated on the top tier. As can be seen in Fig. 4.7, the

thermal difference between the two scenarios is very small, since the thermal conductivity

of silicon is high. These results suggest that data from the B2B thermal testbed can be used

to make reasonable inferences about F2B systems.

4.3 Results and discussion

We evaluated the two-tier thermal testbed with four deep neural networks (DNNs), detailed

in Table 4.1, which represent the state-of-the-art in artificial intelligence, recognition, and

classification. Each DNN benchmark was run 25 times back to back to allow the GPU

time to reach a steady-state condition under load, and the average GPU temperature, power

consumption, and computation time were recorded. After each set of 25 runs, the system

was kept idle for 5 minutes to allow time for the GPU to return to a baseline temperature

after which the next benchmark was run 25 times back to back. This process was repeated
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Figure 4.3: NVIDIA Tesla K40 heat spreader with edges milled to accommodate
heater/thermometer wires, and with thermal interface material applied to ensure efficient
heat transfer.

for each benchmark with top-die power dissipations of 0 W, 16 W, 24 W, 30 W, and 40 W.

Each time the top die power dissipation was changed, the GPU was kept idle for 5 minutes

to reach a steady-state temperature. After running the top die at 24 W, the resistance of

heaters 2 and 4 dropped to zero, due to a short caused by a small gap in the electrical

isolation. To approximately compensate for the loss of heaters 2 and 4, heaters 1 and 3

were run at twice the power density for the 30 W and 40 W runs. The resistance of each

heater on the top die was sampled every 3.3 seconds to determine the dynamic top-die

temperatures.

In Fig. 4.8, the temperature of each heater on the top die is shown as a function of

time for one complete test run encompassing all four benchmarks, with the top-die power

dissipation set to 0 W. The beginning and end of each workload are clearly visible as the

die temperature rapidly increases to a steady state under load, then decays to its idle steady

state. The variation in heater temperature is attributed to imperfect contact between the

heat spreader and the heater/GPU stack.
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Figure 4.4: Profile view of the modified heat spreader with top-tier heater/thermometer die
attached. A small portion of the copper heat spreader was milled down to make room for
the heater wires.

Table 4.1: Benchmark overview
Network Dataset Domain Model Size MACCs
LeNet MNIST Digit recognition 0.8 MB 2M
AlexNet ImageNet Detect/classify 116.3 MB 736M
Overfeat ImageNet Detect/classify 278.3 MB 2,797M
VGG-16 ImageNet Detect/classify 323.87 MB 16,361M

In Fig. 4.9, the average GPU temperature during each workload is shown as a function

of top-die power dissipation. As the top-die power dissipation increases, the average GPU

temperature measured during each workload tends to increase, and the temperature during

the AlexNet, Overfeat, and VGG-16 workloads exceeds 85◦C at a top-die power dissipation

of approximately 30 W. The GPU remains relatively cool during the LeNet workload, as

it has a much smaller computational footprint than the others, and does not fully stress the

GPU. As shown in Fig. 4.10, the time required for each workload remains relatively flat

until 30 W, at which point the larger workloads begin to overpower the heat sink, and the

GPU begins limiting its performance to avoid exceeding its thermal limits.
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Figure 4.5: NVIDIA Tesla K40 heat spreader with heater die attached. The heat spreader
sits within a cutout in the aluminum chassis (black).

In Fig. 4.11, the average GPU power consumption is shown for each workload as a

function of top-die power dissipation. GPU power increases for each of the large workloads

(AlexNet, Overfeat, and VGG-16) up to a top-die power dissipation of approximately 24 W,

due in part to increased transistor leakage. Above 24 W, the GPU power consumption drops

sharply for each of the large workloads. As can be seen in Fig. 4.10, the GPU appears to

limit its performance in order to remain within its thermal envelope, as the average compu-

tation time for each benchmark stays roughly constant until the average GPU temperature

approaches 90◦C, at which point the computation time dramatically increases. While the

average GPU power decreases at high top-die power dissipations, the computation energy

increases significantly, due to the increase in computation time, as seen in Fig. 4.12.

The temperature measured at heater 1 on the top die for each experimental condition is

shown in Fig. 4.13. During the 30 W and 40 W tests the maximum temperature of heater

1 increases to 110◦C. This high temperature can be attributed to the poor thermal transfer

between heater 1 and the heat sink, as shown in Fig. 4.8, and to the asymmetric power maps

used for the 30 W and 40 W tests, during which only heaters 1 and 3 were used due to the

failure of heaters 2 and 4.
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Figure 4.6: Calibration measurements (circles) and best fits (lines) for the heater/ther-
mometer structures on the top-tier heater die.

4.4 Conclusions

GPU-accelerated deep neural networks could benefit greatly from the high bandwidth and

low latency enabled by 3D integration, as DNNs require large sets of model parameters to

be fed to the cores of the GPU, but thermal limits could offset the benefits of such integra-

tion. In order to explore the impact of 3D stacking on DNN computational performance,

we have developed and characterized an air-cooled thermal testbed for the investigation

of the impact of thermal crosstalk and cooling limits on the performance of high perfor-

mance 3DICs. The thermal testbed was used to emulate a two tier GPU-based 3D stack

with a thermal die on the top tier to emulate stacked memory or logic. The GPU operating

temperature increased steadily with top-die power dissipation, and once the average GPU

temperature approached 90◦C (at 30 W top-die power dissipation), the GPU appears to
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Figure 4.7: Simulated thermal impact of face to back (F2B) vs. back to back (B2B) bonding
of a two-tier 3D stack. The B2B thermal response very closely mirrors the F2B response,
justifying the B2B approach used in the testbed.

limit its performance to avoid exceeding its thermal limits. In the worst case, we observed

a 2.6X increase in computation time, and a 2.2X increase in computation energy, and we ex-

pect higher top-tier power dissipations to yield worse performance/efficiency degradation.

These results suggest that aggressive cooling techniques may have a significant impact on

the viability of high performance 3DICs, especially for DNN workloads.
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Figure 4.8: Measured temperature of the top-tier die with the GPU running various machine
learning workloads, and with the top die dissipating 0 W.

Figure 4.9: Impact on GPU temperature as top-die power is increased.
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Figure 4.10: Impact of heater power on GPU computation time. Each curve is normalized
to its value at a top-die power dissipation of 0 W.

Figure 4.11: Impact on GPU power dissipation as top-die power is increased.
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Figure 4.12: Impact of heater power on GPU computation energy. Each curve is normalized
to its value at a top-die power dissipation of 0 W.

Figure 4.13: Measured temperature of heater 1 during the benchmark suite, for a range of
top-tier power dissipations.
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CHAPTER 5

STOCHASTIC WIRE LENGTH MODELING IN HIGH-DIMENSIONAL

SYSTEMS

5.1 Introduction

Much work has been done to develop modeling capabilities for 2D and 3D ICs, in order

to better predict the performance and energy requirements for these systems. To date, no

work has been done in the literature on networks with higher-degree dimensionality, for the

simple reason that we live in a three-dimensional universe. Network topologies, however,

can take any dimensionality, and there are many well-known examples of systems with

high-dimensional network topology. If we look at the simpler case of a system designed

natively as a 3DIC, and then reimplemented as a monolithic 2DIC, we can clearly expect

a degradation in performance due to the need to map an inherently 3D system onto a 2D

plane. The same is true of systems with higher-dimensional connectivity – even imple-

menting them as 3D ICs will still incur a performance/energy penalty with respect to the

”native” space in which the system belongs. As of yet, we have no method to quantify

this effect, but we can extend the models developed previously to treat the case of higher

dimensional systems.

Obviously, we cannot truly implement a four- or five-dimensional system in three-

dimensional space. We can, however, implement networks with higher-dimensional topolo-

gies in lower-dimensional spaces, albeit with reductions in implementation efficiency, as

illustrated in Fig. 5.1. As these network topologies arise frequently in the design of high

performance computing and communications networks, extensive work has been done on

characterizing the performance of high-dimensional network topologies [90–97]. Addi-

tionally, high-dimensional interconnect topologies have been observed in natural intercon-
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nect systems, such as the human brain [98]. Extending existing wire length models to

higher-dimensional spaces, then, provides an avenue towards understanding the potential

performance tradeoffs involved in the implementation of densely-interconnected systems.

As we are extending existing stochastic wirelength methodologies, we begin with some

of their key assumptions. Chiefly, we will assume that all systems are composed of regular

periodic arrays of computing elements, and that interconnections between them are routed

in a manhattan grid, in which all interconections are broken into purely lateral, x-directed

and y-directed components. Similar to how, when walking the streets of a large city, a

pedestrian cannot walk directly to their destination, but must rather follow the natural grid

formed by the city blocks, we assume that interconnects must likewise be routed in discrete,

purely x-directed or y-directed components. While this assumption may hold well for ICs,

in other kinds of computing systems (such as biological neural networks) interconnects are

free to be routed in arbitrary directions. In systems such as these, our methodology will

tend to overpredict the length of all wires in the system, as the true wirelength will be closer

to the hypotenuse of the triangle formed by the total in-plane x-directed and y-directed wire

length. Despite this discrepancy, these methods provide a method to rapidly investigate the

behavior of the overall wire length trends in such systems in a manner which has not yet

been possible. Relaxation of some or all of these assumptions is possible, but introduces

significant additional complexity to the derivation and the result.

5.2 Derivation

In this work we will use a similar methodology as that laid out in [31] and extended in

Chapter 2. We will continue to treat the system as a homogeneous block of randomly-

placed logic, and for simplicity we will consider the case of a regular hypercube. This

assumption can easily be relaxed, but it leads to a significantly more unwieldy result, with-

out providing significant gains in the utility and clarity of the results. First, we must recast

the original problem in a slightly different way, in order to simplify the approach.
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Figure 5.1: Four-dimensional (left, [99]) and six-dimensional (right, [90]) cubic networks,
each with two nodes in each dimension, implemented in a two-dimensional plane. As the
number of dimensions of the system increases, the details of the interconnection networks
between nodes become significantly more complex.

Figure 5.2: (left) Representation of a 2D system with uniformly-distributed homogeneous
logic. The 2D representation can be broken into two independent 1D functions (right).

5.2.1 The gate pair function

fl(l) =
l∑

lx=0

m∑
x1=0

m∑
y1=0

r(x1, 0,mx)r(x2, 0,mx)r(y1, 0,my)r(y2, 0,my) (5.1)

fl(l) =
l∑

lx=0

m∑
x1=0

m∑
y1=0

r(x1, 0,mx)r(x1 − lx, 0,mx)r(y1, 0,my)r(y1 − ly, 0,my) (5.2)
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fl(l) =
l∑

lx=0

m∑
x1=0

m∑
y1=0

r(x1, 0,mx)r(x1 − lx, 0,mx)

× r(y1, 0,my)r(y1 − (l − lx), 0,my) (5.3)

The operand of the summation can take only two values: if the points described by

x1, y1, x2, and y2 lie within the boundaries of the system, then the operand becomes 1,

otherwise it is 0. Essentially we are simply looking at all possible combinations of x and

y coordinates for two gates, and adding up all the possible combinations that are valid.

Additionally, by starting the summation at one corner of the chip and rastering across the

rest of the chip, we can avoid double-counting gate pairs. Additionally, we must note that

the lx summation must be handled differently when l < mx and when l > mx. By keeping

these points in mind we can dramatically simplify Eq. (5.3) by focusing on the limits of the

summations.

For the case of 0 < l <= m:

fl(l) =
l∑

lx=0

m∑
x1=lx

m∑
y1=ly

r(x1, 0,mx)r(x1 − lx, 0,mx)r(y1, 0,my)r(y1 − ly, 0,my) (5.4)

fl(l) =
l∑

lx=0

m∑
x1=lx

m∑
y1=ly

1 (5.5)

fl(l) =
l∑

lx=0

m∑
x1=lx

(n− ly) (5.6)

fl(l) =
l∑

lx=0

(n− lx)(n− ly) (5.7)

fl(l) =
l∑

lx=0

(n− lx)(n− l + lx) (5.8)

fl(l) =
1

6
(l + 1)(6n2 − 1− 6ln+ l2) (5.9)
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And similarly, for the case of m < l <= 2m

fl(l) =
m∑

lx=l−m

m∑
x1=lx

m∑
y1=ly

r(x1, 0,mx)r(x1 − lx, 0,mx)r(y1, 0,my)r(y1 − ly, 0,my)

(5.10)

fl(l) =
m∑

lx=l−m

m∑
x1=lx

m∑
y1=ly

1 (5.11)

fl(l) =
m∑

lx=l−m

m∑
x1=lx

(n− ly) (5.12)

fl(l) =
m∑

lx=l−m

(n− lx)(n− l + lx) (5.13)

fl(l) =
1

6
(2n− l + 1)(l − 2n)(1 + l − 2n) (5.14)

So then our 2D gate pair function becomes:

fl(l) =


1
6
(l + 1)(6n2 − 1− 6ln+ l2) 0 < l ≤ m

1
6
(2n− l + 1)(l − 2n)(1 + l − 2n) m < l ≤ 2m

(5.15)

To extend to higher dimensions we can simply define a new variable, l2D = lx + ly, and

modify our summation accordingly.

fl(l) =
l∑

l2D=0

l2D∑
lx=0

m∑
x1=lx

m∑
y1=ly

m∑
z1=lz

r(x1, 0,mx)r(x1 − lx, 0,mx)

×r(y1, 0,my)r(y1 − ly, 0,my)

×r(z1, 0,mz)r(z1 − lz, 0,mz) (5.16)

fl(l) =
l∑

l2D=0

m∑
z1=lz

f2D(l2D) (5.17)

It is critical, however, to properly handle the cases of l2D and lx, which each are affected

by the particular value of l (in the same manner as in the 2D case). In general we can define

the gate pair function in N dimensions recursively as a function of the gate pair function

in N − 1 dimensions. We must first make some simple observations about fN(l), the gate

pair function in N dimensions:
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1. fN(l) will be a piecewise function with N nontrivial regions.

2. There will be N position variables (x1, x2, ..., xN ) to consider

3. There will beN−1 length variables (l1, l2, ...lN−1) appearing as summation variables

4. lN will apear in the summation only in the limits of the lN−1 summation

5. The summations in Eq. (5.17) will span at most two regions of fN−1

If we define the variable r as the region number (i.e. which section of the domain of fN

we are interested in), then we can write the gate pair function in any dimension as:

fN(lN ∈ [(r − 1)m, rm]) = ...

lN∑
0

(lN−1)

m∑
lN−lN−1

(xN )

fN−1(lN−1 ∈ [0,m]) r = 1 (5.18)

(r−1)m∑
lN−m
(lN−1)

(r−1)m∑
lN−lN−1

(xN )

fN−1(lN−1 ∈ [(r − 2)m, (r − 1)m])

+

lN∑
(r−1)m+1
(lN−1)

(r−1)m∑
lN−lN−1

(xN )

fN−1(lN−1 ∈ [(r − 1)m, rm]) r ∈ [2, N − 1] (5.19)

rm∑
(lN−m
(lN−1)

(r−1)m∑
lN−lN−1

(xN )

fN−1(lN−1 ∈ [(r − 2)m, (r − 1)m]) r = N (5.20)

5.2.2 The connection function

Here we will again use the method of [31] as a guide, and again we will rework the

two-dimensional problem with a slightly different methodology in order to make it more

amenable to extension to higher dimensions. The crux of the problem is the derivation

of the nonstarting gate function, which counts the number of gates which cannot possibly
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participate in any connections of a particular length l. In order to determine the number of

nonstarting gates, we can draw lines, A, and B, described by the following equations:

yA = (m− xA) + (m− l′) (5.21)

yB = xB + (m− l′) (5.22)

where l′ = l − 1.

By summing the gates contained below both yA and yB we can determine the number

of nonstarting gates. In two dimensions, as l increases, we must deal with four distinct

situations, as shown in Fig. 5.3. for l < m/2 we simply have the number of nonstarting

gates as l. Once l exceeds m/2, we must sum up xA − xB in the triangular central region,

where xA > xB. Once l exceeds m we must keep track of the points at which lines A and

B ”clip” the sides of the chip – these points will separate a simple rectangular region from

the triangular region, which must be summed as before. Finally, once l > 3m/2 we will

also need to account for the fact that the top of the triangular region will also be clipped

off.

Given this framework, the derivation of the nonstarting function is straightforward,

if somewhat tedious. The key observation to note is that the summation can simply be

computed as:

yclip∑
ymin
(y)

(xA(y)− xB(y) + 1) +

ymax∑
yclip+1

m (5.23)

where xA(y) and xB(y) can be easily determined from Eq. (5.22), and where yclip rep-

resents the vertical coordinate of the line separating the triangular and rectangular regions

(where the lines described by yA(x) and yB(x) are ”clipped” by the edges of the chip).

Clearly then, the limits ymin and yclip are the key quantities to be determined. For our

purposes we will consider the origin to be the top left corner of the chip, therefore ymin cor-

responds to the top of the triangular region, and can be found by simply setting xA = xB
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Figure 5.3: The four possible domains encountered during the determination of the num-
ber of nonstarting gates. As l increases, the number of nonstarting gates increases in a
predictable, if unwieldy, manner.
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and solving for y (while also noting that the minimum value of ymin is 0).

ymin =


3
2
m− l′ l′ ≤ 3

2
m

0 l′ > 3
2
m

(5.24)

To find yclip we can simply set x to 0 in Eq. (5.22) and solve for either yA or yB. This gives

us:

yclip = 2m− l′ (5.25)

So then we end up with

G(l) =



l l ∈ [0,m/2]
yclip∑
ymin
(y)

(xA(y)− xB(y) + 1) l ∈ [m/2,m]

yclip∑
ymin
(y)

(xA(y)− xB(y) + 1) +

ymax∑
yclip+1

m l ∈ [m, 3m/2]

yclip∑
ymin
(y)

(xA(y)− xB(y) + 1) +

ymax∑
yclip+1

m l ∈ [3m/2, 2m]

(5.26)

G(l) =



l l ∈ [0,m/2]

1
4
(3 + 2l − 2− n)2 + n− l l ∈ [m/2,m]

1
4
(1 + n)2 + n(l − n) l ∈ [m, 3m/2]

(2n− l)(1 + l − n) + n(l − n) l ∈ [3m/2, 2m]

(5.27)

5.2.3 The connection function in higher dimensions

We can make use of the 2D connection function to simplify the derivation of the connection

function in higher dimensions. Consider, for instance, the connection problem in three

dimensions. In this case we can break the three-dimensional connection problem into a

series of two-dimensional problems, as shown in Fig. 5.4.
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Figure 5.4: The connection problem in higher dimensions (left) can be broken into multiple
lower-dimensional problems (right).

In order to derive the three-dimensional connection function we can first note that

l3D = l2D + lz (5.28)

where z and lz = z1−z2 are the position and length variables in the third dimension, respec-

tively, and l2D = lx+ ly, as before. We know that z ∈ [0,m], and that lz ∈ [0,min(l3D,m)].

For each value of z we essentially have a pseudo-independent two-dimensional problem, as

can be seen in Fig. 5.4b. In order to simplify the three-dimensional problem, we can make

a few observations about how Nns3D behaves as lz varies:

1. For lz = 0 we recover the original 2D problem

2. For lz = 1 we recover the original 2D problem with l2D → l2D − 1

3. For lz = i we recover the original 2D problem with l2D → l2D − i

Based on these observations, we can postulate:
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G3(l3D) =
m∑
0

(lz)

G2(l3D − lz) (5.29)

where l3D = lx + ly + lz, and where G2 is the two-dimensional nonstarting gate function,

given by Eq. (5.27).

The same arguments can be extended to higher dimensions, and we can therefore write

down a simple recursive expression for the N-dimensional nonstarting function, in terms of

the (N-1)-dimensional nonstarting gate function.

Gd(ld) =
m∑
0

(lxd )

Gd−1(ld − lxd
) (5.30)

where ld =
∑N

i=1 lxi
, with x1 = x, x2 = y, x3 = z, and so on.

While Eq. (5.30) can be used to derive the functional form of the connectivity function

in any dimension, further simplifications must be made to make the derivation process

simpler and less unwieldy.

Note that Eq. (5.30) is an equation in ld − lxd
; we can clean up the equation a bit by

defining a new variable of convenience, p = ld − lxd
. Then we have

Gd(p) =
l∑

l−m
(p)

Gd−1(p) (5.31)

First, we can note that the nonstarting gate function will ultimately reduce to a summed

series of terms involving polynomials in n and powers of l. We can therefore rewrite the

nonstarting gate function in terms of generic terms, as follows:

Gd(p) =
imax∑
i=0

ai(n)pi (5.32)
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Plugging Eq. (5.32) into Eq. (5.31), we get:

Gd(p) =
l∑

l−m
(p)

imax∑
i=0

ai(n)pi (5.33)

For a particular value of i, we simply have:

G
(i)
d (p) =

l∑
l−m
(p)

ai(n)pi (5.34)

G
(i)
d (p) = ai(n)

l∑
l−m
(p)

pi (5.35)

G
(i)
d (p) = ai(n)Sp(ld −m, ld) (5.36)

In Eq. (5.36), the pi summation has been folded into the new function Sp(a, b), since it is a

straightforward summation, and since no other part of the G(i)
d term depends upon it.

At this point we still must still account for the fact that Gd−1(p) is a piecewise function,

which will transition across multiple definition boundaries in the summation in Eq. (5.30).

Each functional region inGd−1(p) is half the width of the relevant dimension; if we assume

that the system is a symmetric hypercube in all dimensions, with side-length m, then each

region will be m/2 units wide. In general, then, we must rewrite Eq. (5.31) as

Gd(p) =

q1∑
l−m
(p)

Gd−1(p) +

q2∑
q1+1
(p)

Gd−1(p) +
l∑

q2+1
(p)

Gd−1(p) (5.37)

where q1 and q2 are the boundaries between the functional domains of Gd−1(p). For our

symmetric hypercube we can define a simple function, r(j), which returns the lower do-

main boundary, r, of region j, as:

r(j) = bjm
2
c (5.38)
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We can then properly expand Eq. (5.31) as

Gd(p) =
l∑
0
(p)

Gd−1(p) j = 0

Gd(p) =

r(1)∑
0
(p)

Gd−1(p) +
l∑

r(1)+1
(p)

Gd−1(p) j = 1

Gd(p) =

r(j−1)∑
l−m
(p)

Gd−1(p) +

r(j)∑
r(j−1)+1

(p)

Gd−1(p) +
l∑

r(j)+1
(p)

Gd−1(p) 2 ≤ j < jmax − 1

Gd(p) =

r(j−1)∑
l−m
(p)

Gd−1(p) +

r(j)∑
r(j−1)+1

(p)

Gd−1(p) j = jmax − 1

Gd(p) =

r(j)∑
l−m
(p)

Gd−1(p) j = jmax (5.39)

A Mathematica implementation of the expressions in Eq. (5.39) which can be used to

iteratively derive the connection functions in arbitrarily high dimensions is presented in

Chapter A.

5.3 Investigation of wirelength distributions in higher dimensions

Now that we have developed a method for modeling wire length distributions in higher

dimensions, we can investigate the interplay of the physical and topological dimensional-

ity of various systems. We will consider a large, homogeneous, and spatially-symmetric

system, consisting of 1012 logic elements, implemented in physical spaces of 2, 3, 4, and

5 dimensions. This value for system size is chosen for the simple reason that a system

with 1012 logic gates can be implemented as a two-dimensional array with 106 elements

to a side, or a three-dimensional grid with 104 elements to a side, or a four-dimensional

hypercube with 103 elements to a side, for ease of comparison.

First, we investigate the impact of physical topology on the overall interconnect distri-

bution, by considering our hypothetical system with a rent exponent of 0.6. One key test
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Figure 5.5: The total number of interconnects in the system is conserved, as expected.

of the new wire length distributions is the conservation of total interconnects; while the

length of given interconnections may change, the number of inter-gate connections should

ultimately be independent of the physical space in which the system is embedded, as it

is determined by the system interconnect topology. In Fig. 5.5 we can see that the total

number of inter-gate connections is indeed independent of the physical space in which the

design is embedded.

As can be seen in Fig. 5.6, implementing the same system in higher-dimensional spaces

significantly reduces both the maximum wirelength, as well as the expected number of long

interconnects, with a maximum wire length reduction of roughly three orders of magnitude

when moving a design from a two- to a five-dimensional implementation. Rather than

considering the overall distribution of wire lengths, we can also consider the impact of

physical topology on the total wire length in the system; in Fig. 5.7 we can see that higher-
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Figure 5.6: Implementing designs in higher-dimensional spaces dramatically reduces the
maximum interconnection length.

dimensional systems have dramatically reduced total wire length, though they more shorter

wires than their lower-dimensional counterparts.

In order to investigate the impact of interconnect topology on the overall interconnect

complexity, we sweep the rent constant of the system from 0.1 to 0.9. The total wirelength

of these hypothetical systems is shown in Fig. 5.8. In this figure, we visualize the total

wirelength of the system, normalized to its value at a rent exponent of 0, and how that total

wirelength changes as the interconnect complexity (as represented by the rent exponent)

increases. Interestingly, we see the total wire length of the system fully transition from

a low-growth to a high-growth regime at a rent exponent corresponding to the intrinsic

physical dimensionality of the system.

For example, the 2D implementation achieves a wire length enhancement of 10X over
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Figure 5.7: Higher-dimensional systems have dramatically-reduced total wire length.

the p = 0 case at a rent exponent of p = 0.5, which corresponds to a 2D mesh. The 3D

system likewise achieves this same enhancement factor at a rent exponent of p = 0.67,

which corresponds to a 3D mesh, and the 4D and 5D systems behave similarly at p = 0.75

and p = 0.80, corresponding to 4D and 5D meshes, respectively. By comparing the var-

ious curves at a fixed rent exponent we can see the wire length penalty imposed when

implementing a system with high topological complexity into a lower spatial dimension;

this penalty becomes extreme for rent exponents of 0.75 and greater which must be imple-

mented in two-dimensional spaces.
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Figure 5.8: Interconnection complexity rapidly increases as the rent exponent exceeds the
intrinsic spatial dimension of the design.

5.4 Application to Biological Neural Networks

With the slowing of Moore’s law, there is significant interest in the investigation and devel-

opment of alternative computational schemes. Neuromorphic computing, in which compu-

tational systems are designed to emulate the functionality and behavior of the human brain,

is of particular interest as a potential enabler of higher performance computing. While

Rent’s rule was first observed in and formulated for silicon-based systems [19], rent-like

scaling has also been observed in biological systems [100–103], with the human brain be-

ing given a rent exponent of between 0.75 and 0.8 [104]. While great advances have been

made in the performance and power of neural networks and neuromorphic hardware, the

determination of the necessary scale and complexity of artificial human-scale neural sys-
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tems is still very much an open question. The rent exponents derived for the human brain

put it squarely in the domain of a four- or five-dimensional network topology, implying sig-

nificant interconnection overhead for two- and even three-dimensional implementations.

In order to investigate the potential for the application of stochastic wire length tech-

niques to biological systems we applied the two- and three-dimensional stochastic wire

length models presented earlier to estimate the wiring parameters of the human brain. In

the brain, disparate neurons are connected by axons, which can very loosely be analogized

to wires in a conventional IC. We estimated the average gate pitch of the system by de-

termining the average neuronal pitch, as determined by the total number of neurons in the

brain and the typical volume of a human brain. Rent parameters were taken from recent

topological connectivity studies of the human brain. The parameters used in these simula-

tions are summarized in Table 5.1.

As a first check to determine whether stochastic wire length techniques can be of use in

neural modeling, we investigated the total wire length of a neural-scale system. The total

length of axons in the human brain is estimated to be roughly 149,000-176,000 km [107].

Using the neural rent parameters reported in [104], we swept the rent exponent of the

system and compared the results for fully two-dimensional and fully three-dimensional im-

plementations. The simulations were repeated using the different Rent Constants reported

in [104], yielding ranges of As can be seen in Fig. 5.9, this approach yields surprisingly

good agreement with the reported biological data for the relevant parameter ranges, con-

sidering the limited nature of the input data.

Table 5.1: Neural Parameters
Number of neurons 1011 [105]

Brain volume (cc) 1260 [106]
Rent Constant (DSI) 1.2 [104]

Rent Exponent (DSI) 0.78 [104]
Rent Constant (MRI) 1.6 [104]

Rent Exponent (MRI) 0.83 [104]
Total Axon Length (km) 149k - 176k [107]

92



Figure 5.9: Wire length estimates for 2D (blue region) and 3D (red region) cubic networks
of roughly the same size as a human brain. The horizontal dotted lines demarcate the first
standard deviation of total neural wire lengths reported in [107]. The black curves are cal-
culated using either the extracted DSI or MRI Rent constants, kDSI and kMRI , summarized
in Table 5.1, while the colored areas between the black curves represent systems with Rent
constants between the two values.

In order to begin to estimate what a brain-scale system might look like if implemented in

silicon, we applied the wire sizing and repeater insertion algorithms described in Chapter 3

to arrive at estimates for the overall wiring demand in such a system. We assume a system

surface area of 2500 cm2, equivalent to that of the human brain, and a Rent exponent of

0.80, roughly between the values extracted by various methods in [104]. We consider a

range of 2D (single tier) and 3D (two, four, eight, sixteen, and thirty-two tiers) systems,

using the 3D stochastic wire length model developed in Chapter 2. We assume logic gate

sizes and minimum wiring pitches equivalent to those at the 32nm node, as used for our

Sandy Bridge test case in Chapter 3, and we consider a range of target clock frequencies,
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Figure 5.10: Total wiring area requirements for a brain-scale system implemented at the
32nm process node, with target clock frequencies of 100MHz (black), 350MHz (blue),
1GHz (green), and 3.5GHz (red).

from 100MHz to 3.5GHz. Additionally, we consider the same system implemented as a

full 3D system, as well as a 4D and 5D system, using the hyperdimensional wire length

model developed above.

The total wiring area requirements for a shallow 3DIC brain-scale system implemented

at the 32nm node are shown in Fig. 5.10. Due to the high degree of intrasystem connectivity

and the extremely high number of computational elements (100B ”neurons”), the overall

wiring demand in this case is extreme. Even for a 32 tier system running at only 100MHz,

the total wiring area required is projected to exceed 3 m2, which dramatically exceeds the

0.25 m2 surface area of the system itself. This mismatch indicates that an extremely high

number of routing layers would be needed to fully route the system.

In Fig. 5.11 we can clearly see the challenge posed by brain-scale interconnection: for

a 2D system operating at 100Mhz, over 400 wiring tiers would be required. The wiring
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Figure 5.11: Wire pitch requirements for a 3DIC brain-scale system operating at 100MHz.
The minimum patternable wire pitch is assumed to be 112nm, corresponding to the 32nm
process node.

tier requirements increase as the number of logic tiers increases, due to the reduced per-tier

area available for routing, but the reduction in overall interconnection length relaxes the

timing constraints on the system, and allows the use of finer-pitch wires for more of the

interconnect stack. While a 32-tier stack requires over 1100 total wiring tiers, the expected

number of wiring tiers per logic tier is reduced to only 35.75; while this number is quite

high compared to the 5-10-layer interconnect stacks common in microprocessors today, it

is not entirely outside the bounds of feasibility.

Relaxing the target clock frequency in this case is unlikely to reduce the interconnect

requirements for the 32-tier case, as most wires in that system are already pinned at the

minimum wire pitch, but lower clock frequencies could significantly reduce wiring re-

quirements for less-aggressive 3D stacks. Increasing the clock frequency from 100MHz to

3.5GHz changes the picture, however, as can be seen in Fig. 5.12. In this case, all configu-

rations under consideration require over 17, 500 total wiring tiers; even in the 32-tier case,

over 500 wiring tiers are required for each active logic tier.
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Figure 5.12: Wire pitch requirements for a 3DIC brain-scale system operating at 3500MHz.
The minimum patternable wire pitch is assumed to be 112nm, corresponding to the 32nm
process node.

In Fig. 5.13, we can clearly see the impact of dimensionality on the system interconnect

properties. By moving to a full 3D system, the overall wiring area requirements can be

reduced by roughly three orders of magnitude. If four- and five-dimensional systems were

feasibly implementable, they could provide additional reductions in wiring requirements,

though not as significant as the step from a two- to three-dimensional implementation.

This effect is in line with our predictions in Fig. 5.8, as a Rent exponent of 0.8 corresponds

roughly to a five-dimensional system, and the additional interconnection penalty is most

severe for systems with the smallest physical dimension.

In Fig. 5.14 the wire pitch requirements are shown for 2D, 3D, 4D, and 5D systems

operating at 3.5GHz. In this case, a full 3D implementation requires the total wiring tier

requirements from over 104 to roughly 40. Again, further reductions in the dimensionality

of the system provide additional reductions in wiring requirements, though not to the same

degree.
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Figure 5.13: Total wiring area requirements for a brain-scale system implemented at the
32nm process node in 2, 3, 4, and 5 dimensions, with target clock frequencies of 100MHz
(black), 350MHz (blue), 1GHz (green), and 3.5GHz (red).

5.5 Application to Network Modeling

Hypercubic networks are often considered in high performance network design due to their

low network width [90, 94–97, 108]. The methods developed in this section can be di-

rectly applied to better understand the properties of information flow in these complex

high-dimensional networks. Using the closed-form expression for the node-pair distribu-

tion from Eq. (5.20), a picture of the distribution of node distances in a typical hypercubic

network of arbitrary dimensionality can be quickly generated. Despite the fact that these

methods were initially introduced to model the distance between individual logic gates, the

formalism is independent of the specific details of what kind of computing elements are be-

ing interconnected. In the case of a large high performance computing cluster, rather than

seeking to determine the total length of wires between individual computing gates, we must

chiefly worry about the total number of network ”hops” between computing nodes, as these
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Figure 5.14: Wire pitch requirements for a 3DIC brain-scale system operating at 3500MHz.
The minimum patternable wire pitch is assumed to be 112nm, corresponding to the 32nm
process node.

dominate the total time required to route data from its origin to its destination. Ultimately,

then, the mathematics of the problem are identical – we must still determine the distribu-

tion of lengths between pairs of computing nodes – allowing us to repurpose the gate-pair

function, originally derived to describe the behavior of interconnects at the micro-scale,

within an individual microprocessor, to better understand the distribution of possible com-

munication lengths in these more macroscopic networks interconnecting many individual

processors.

Hypercubic networks of this type have been examined for use in high-performance

computing systems and supercomputers, due to their ability to dramatically reduce the

maximum number of hops required to route information between cores or computing ele-

ments [109, 110]. When coupled with an appropriate probability distribution for the like-

lihood of inter-node communication, the same methodology can be used to predict the

distribution of interconnection demand at various length scales in the network.
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Figure 5.15: Node pair separation distribution in a hypothetical high-performance network
with 1M total computing nodes, implemented as hypercubic network of increasing dimen-
sion. Implementing the network with higher interconnection dimensionality can signifi-
cantly reduce the median distance between compute nodes.

For example, let us consider a hypothetical high performance n-cube network with 1M

computing nodes, as can be seen in Fig. 5.15. By normalizing the cumulative node pair

distribution, we can readily see the significant reduction in both median and maximum

node separation, as shown in Fig. 5.16. By combining these node separation distributions

with empirical or predicted internodal communication probability models, a more complete

picture of network utilization and internodal bandwidth requirements can be determined for

high density high performance networks.
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Figure 5.16: Cumulative fraction of node pair separations in a hypothetical high-
performance network with 1M total computing nodes, implemented as hypercubic network
of increasing dimension.
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CHAPTER 6

CONCLUSIONS

3D integration offers an attractive avenue for maintaining the aggressive pace of system-

level performance gains demanded by Moore’s Law. By reducing the energetic and tempo-

ral costs of on-chip and off-chip communication, significant improvements in throughput,

latency, and energy efficiency can be realized. These gains, however, come at the cost of in-

creased thermal coupling and overall system complexity. In this thesis, key advancements

have been presented to better understand the complexities of the 3DIC design space and to

demonstrate and understand the challenges inherent in 3DIC design. The works presented

include:

1. Improved stochastic wire length models which account for the impact of large through-

silicon vias, without sacrificing solution speed.

2. Improved TSV demand estimation models, which fully account for the presence of

signals which may need to be routed through tiers in deep 3D stacks.

3. An integrated 3DIC pathfinding tool, incorporating the improved 3DIC wire length

and TSV demand models, wire and repeater sizing models, a finite difference thermal

model, and an analytical 3DIC power delivery model.

4. Exploration of the 3D IC design space, and investigation of the tradeoffs inherent in

monolithic 3DIC integration.

5. Experimental benchmarking of a computationally-functional 3D thermal testbed, and

demonstration of thermal bottlenecking on a range of machine learning benchmarks.

6. Development of stochastic interconnect length models for higher-dimensional inter-

connect topologies.
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In this final chapter, we will briefly summarize the key contributions of this work and

discuss potential avenues for further research.

6.1 Summary of the presented work

This thesis has several major components, each of which are summarized as follows:

First, an improved stochastic wire length model for 3DICs was developed, which prop-

erly accounted for the impact of large through-silicon vias. While previous works expanded

stochastic wire length modeling techniques to three dimensions, the lateral impact of TSVs

was ignored. Since TSVs are typically orders of magnitude larger than logic, neglecting the

impact of lateral TSV dimensions could lead to underestimating the overall wire length in

the system, as TSVs displace logic, leading to a larger overall system footprint. Addition-

ally, an improved TSV demand model was developed to more accurately estimate the TSV

requirements in tall 3D stacks. Previous models extended stochastic wire length estimation

techniques to estimate the number of interconnections between tiers in a 3D stack, but the

existence of signals requiring routing through multiple tiers was neglected. The predictions

of the improved TSV demand model were then validated against partition data for several

benchmark netlists, and were compared against the predictions of models which did not

account for through-tier signal routing.

The improved wire length and TSV demand models were then combined with wire

sizing and repeater insertion algorithms, in order to develop a clear picture of the on-chip

interconnect requirements in 3DICs. These models were further integrated with a finite

difference thermal solver and an analytic 3DIC power delivery model, to create a virtual

integration platform for 3DICs. The virtual integration platform enabled rapid investiga-

tion of the interplay between signaling, thermal, and power delivery requirements in 3DICs.

The virtual platform was validated against published data for Intel processors at the 65, 45,

and 32 nm process nodes, and the performance and power consumption of a Sandy Bridge

32nm CPU core was examined for a wide range of 3D configurations. Most notably, the
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performance of a 3D implementation of the CPU core was projected to degrade with in-

creasing levels of 3D integration, due to the challenge of adequately cooling such a device.

In order to experimentally investigate the thermal challenges predicted in the prior sec-

tions, a 3D thermal testbed was constructed to examine the impacts of 3D stacking on a

functional device. The testbed was composed of a high performance NVIDIA Tesla K40

GPU die, atop which was mounted a silicon die equipped with resistive heaters and ther-

mometers. The GPU was stressed with various machine learning workloads, and the power

dissipation on the top die was varied to emulate a variety of operating conditions, and

significant performance throttling was observed.

Finally, in order to better understand the impact of interconnect topology on overall in-

terconnect performance, stochastic wire length models were developed for cubic systems of

arbitrary spatial dimension. While higher-dimensional systems are not directly physically

realizable, understanding how interconnect length changes in higher dimensions could help

set bounds on the performance of advanced computing systems.

6.2 Avenues for future work

There are several key opportunities for extensions of the work presented in this thesis.

First, the virtual integration platform developed and presented throughout Chapters 2

and 3 could be extended to investigate 2.5D systems. While 3DICs show great potential

for reducing system interconnect costs, 2.5D approaches such as interposer-based systems,

fan-out wafer level packaging (FOWLP), and other forms of advanced packaging could po-

tentially provide a significant fraction of the performance benefits of 3D integration, while

enabling simpler and more cost-effective assembly and manufacturing. In order to fully un-

derstand the 3D and 2.5D design space, the virtual platform could be extended with models

of off-chip interconnect latency and energy consumption, enabling direct comparison of

interconnect performance and system-level power consumption for a range of 2D, 2.5D,

and 3D integration methodologies. The integration of manufacturing yield and cost models
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would further enhance the utility of such a tool, enabling a holistic evaluation and compari-

son of system performance, power consumption, and cost across a wide range of platforms

and form factors.

Additionally, the thermal testbed presented in Chapter 4 can be further developed to

support a wide range of thermal benchmarking for 3D systems. Additional workload

classes, such as cryptography, image rendering, and image processing could be investi-

gated, as differing workload profiles may exhibit lesser or greater thermal sensitivity. These

investigations could be further enhanced with more detailed workflow emulation on the

top die, as different applications might require either different devices (such as FPGAs,

DRAM, or NAND Flash), or differing levels of performance and power consumption from

the top die. Furthermore, additional dummy dice could be incorporated, in order to examine

the thermal behavior of higher-order 3D stacks.

Finally, the high-dimensional interconnect length models presented in Chapter 5 offer

several potential avenues of extension. Mechanistically, the model derivation can be re-

visited to relax the assumption of strict symmetry, enabling the consideration of a much

wider range of system types and classes. The models can be further used to explore the

interconnect requirements in systems with high-dimensional interconnect topology. The

wire and repeater sizing algorithms used in Chapter 3 could be adapted to better investigate

the implications for highly-interconnected neural or neuromorphic systems. Additionally,

the networking properties of regular high-dimensional networks could potentially be inves-

tigated using the developed models.
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APPENDIX A

AUTOMATIC DERIVATION OF HYPERDIMENSIONAL WIRELENGTH

FUNCTIONS IN MATHEMATICA 10.3

1

2 C l e a r A l l [ ” Global ‘∗ ” ]

3

4 (∗ S e t t i n g up i n i t i a l 2D and 3D p a i r f u n c t i o n s . These w i l l

be used t o a u t o m a t i c a l l y b u i l d h igher−d i m e n s i o n a l p a i r

f u n c t i o n s ∗ )

5 pai rFunc2dA [ l ] = n ∗ ( n−l ) ∗ ( l +1) + 1 /2∗ l ˆ 2∗ ( l +1) − 1 /6∗ l ∗ ( l

+1) ∗ (2∗ l +1) ;

6 pa i rFunc2dB [ l ] = n ∗ ( n−l ) ∗ (2∗n−l −1) + 1 /2∗ l ˆ 2∗ ( 2∗ n−l −1) −

1 / 6∗ ( n ∗ ( n−1) ∗ (2∗n−1) − ( l−n ) ∗ ( l−n +1) ∗ (2∗ l−2∗n +1) ) ;

7 pa i rFunc3dA [ l ] = S i m p l i f y [Sum[ ( n−l + l 2 ) ∗ pai rFunc2dA [ l 2 ] , {

l2 , 0 , l } ] ] ;

8 pairFunc3dBA [ l ] = Sum[ ( n − l + l 2 ) ∗ pai rFunc2dA [ l 2 ] , { l2 , l−

n +1 , n−1} ] ;

9 p a i r F u n c 3 d c o e f f s [ l ] = Sum [ ( n−l + l 2 ) ∗ pa i rFunc2dB [ l 2 ] , { l2 , n ,

l } ] ;

10

11 pa i rFunc3dB [ l ] = S i m p l i f y [ pairFunc3dBA [ l ] +

p a i r F u n c 3 d c o e f f s [ l ] ] ;

12 pa i rFunc3dB [ L ] ;

13
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14 pa i rFunc3dC [ l ] = S i m p l i f y [ Sum[ ( n−l + l 2 ) ∗ pa i rFunc2dB [ l 2 ] ,

{ l2 , l −(n−1) , 2∗ ( n−1)} ] ] ;

15 pa i rFunc3dC [ L ] ;

16

17 pai rFunc4dD [ l 4 ] = S i m p l i f y [ Sum[ ( n−l 4 + l 3 ) ∗ pa i rFunc3dC [ l 3

] , { l3 , l4 −(n−1) , 3∗ ( n−1) } ] ] ;

18 pai rFunc4dD [ L ] ;

19

20 p a i r F u n c 2 d [ l ] = P i e c e w i s e [ {{0 , l <0} ,{ pai rFunc2dA [ l ] , 0 < l

<= m} ,{ pa i rFunc2dB [ l ] , m<= l <=2∗m} ,{0 , 2∗m< l } } ] ;

21 p a i r F u n c 3 d [ l ] = P i e c e w i s e [ {{0 , l <0} ,{ pai rFunc3dA [ l ] , 0 < l

<= m} ,{ pa i rFunc3dB [ l ] , m<= l <=2∗m} ,{ pa i rFunc3dC [ l ] , 2∗m<=

l <=3∗m} ,{0 , 3∗m<l } } ] ;

22

23

24 Element [m&&n , I n t e g e r s && P o s i t i v e ] ;

25

26 xa [ l p , y ] = y + l p − m;

27 xb [ l p , y ] = 2∗m−lp−y ;

28 ymin1 = C e i l i n g [ 3 / 2∗m−l p ] ;

29 ymin1 = 3 /2∗m−l p ;

30 y c l i p = 2∗m−l p ;

31 m=n−1;

32

33

34 (∗ S e t t i n g up 2D n o n s t a r t i n g g a t e f u n c t i o n s ∗ )

35 nns2da [ l p ] = Sum[ 1 ,{ x , xb [ lp ,m] , m} ] ;
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36 nns2db [ l p ] = Sum[ xa [ lp , y]−xb [ lp , y ]+ 1 , {y , ymin1 ,m} ] + Sum

[ 1 , {x , xa [ lp ,m] +1 ,m} ] ;

37 nns2dc [ l p ] = Sum[ xa [ lp , y]−xb [ lp , y ]+ 1 , {y , ymin1 , y c l i p } ] +

Sum[ n , { y , y c l i p +1 ,m} ] ;

38 nns2dd [ l p ] = Sum[ xa [ lp , y]−xb [ lp , y ]+ 1 , {y , 0 , y c l i p } ] + Sum[

n ,{ y , y c l i p +1 ,m} ] ;

39

40 nns2d [ l ] = P i e c e w i s e [ { {0 , l <0} ,{ nns2da [ l −1] , 0<=l <=1/2∗( n

+1) } ,{ nns2db [ l −1 ] , 1 / 2∗ ( n +1)<= l<=m} ,{ nns2dc [ l −1] ,m <= l

<=3/2∗m} ,{ nns2dd [ l −1] ,3 /2∗m<= l <=2∗m} ,{ n ˆ 2 , l >2∗m} } ] ;

41 nnsGen [ func Symbol , l ] := Sum[ f unc [ l−z ] ,{ z , 0 ,m} ] ;

42

43

44 (∗ Expand t o h i g h e r d i m e n s i o n s ∗ )

45 Element [m&&n , I n t e g e r s ] ;

46

47 coef fsAndLims = Map[ C o e f f i c i e n t L i s t [ # , l ]& , nns2d [ l ] ] ;

48 c o e f f s = F l a t t e n [Map[ D e l e t e [ # , 2 ] & , coef f sAndLims [ [ 1 ] ] ] , 1 ] ;

49 c o e f f L i m s = F l a t t e n [Map[ D e l e t e [ # , 1 ] & , coef f sAndLims [ [ 1 ] ] ] ,

1 ] ;

50

51 numSec t ions = Dimensions [ c o e f f L i m s ] [ [ 1 ] ] ;

52 bounds = Range [ 0 , numSect ions −1]∗m/ 2 ;

53 bounds [ [ −1] ] = I n f i n i t y ;

54

55 maxDim = Max[ F l a t t e n [Map[ Dimensions [ # ] &, c o e f f s , 1 ] , 1 ] ] ;

56 c o e f f s P a d d e d = Map[ PadRight [ # , maxDim]& , c o e f f s , 1 ] ;
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57

58 SpSum [ a , b , exp ] := I f [ exp == 0 , Sum[ 1 , {p , a , b } ] ,Sum[ p ˆ

exp ,{ p , a , b } ] ] ; (∗ I f exp i s 0 we ’ re j u s t summing 1 from a

t o b , o t h e r w i s e we need t o a c t u a l l y worry abou t

f u n c t i o n a l form o f p ∗ )

59

60 R e s u l t = C o n s t a n t A r r a y [ 0 , { numSec t ions +2 , Dimensions [

c o e f f s P a d d e d ] [ [ 2 ] ] } ] ; (∗ n u m S e c t i o n s +2 because we ’ re

add ing on a n o t h e r d imens ion , so two more m/ 2 s i z e d

s e c t i o n s ∗ )

61

62 (∗ V e r s i o n w i t h o u t F loor ∗ )

63 For [ i i =0 , i i <Dimensions [ c o e f f s P a d d e d ] [ [ 2 ] ] , i i ++ ,

64 j j j = 1 ; (∗ s t a r t a t 1 s i n c e f i r s t domain i s a c t u a l l y domain

−1 ∗ )

65 R e s u l t [ [ j j j +1 , i i + 1 ] ] = c o e f f s P a d d e d [ [ ( j j j +1) , i i + 1 ] ]∗SpSum [ 0 ,

l , i i ] ;

66 ]

67

68 For [ i i =0 , i i <Dimensions [ c o e f f s P a d d e d ] [ [ 2 ] ] , i i ++ ,

69 j j j = 2 ;

70 R e s u l t [ [ j j j +1 , i i + 1 ] ] = c o e f f s P a d d e d [ [ ( j j j +1)−1, i i + 1 ] ]∗SpSum

[ 0 , ( j j j −1)∗m/ 2 , i i ]

71 + c o e f f s P a d d e d [ [ ( j j j +1)−0, i i + 1 ] ]∗SpSum [ ( j j j −1)∗m/ 2 + 1 , l , i i

] ;

72 ]

73
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74 For [ j j =3 , j j < numSect ions , j j ++ ,

75 For [ i i =0 , i i <Dimensions [ c o e f f s P a d d e d ] [ [ 2 ] ] , i i ++ ,

76 R e s u l t [ [ j j +1 , i i + 1 ] ] = c o e f f s P a d d e d [ [ ( j j +1)−2, i i + 1 ] ]∗SpSum [ l−

m, ( j j −2)∗m/ 2 , i i ]

77 + c o e f f s P a d d e d [ [ ( j j +1)−1, i i + 1 ] ]∗SpSum [ ( j j −2)∗m/ 2 + 1 , ( j j −1)∗

m/ 2 , i i ]

78 + c o e f f s P a d d e d [ [ ( j j +1)−0, i i + 1 ] ]∗SpSum [ ( j j −1)∗m/ 2 + 1 , l , i i ] ;

79 ]

80 ]

81

82 j j = numSec t ions ;

83 For [ i i =0 , i i <Dimensions [ c o e f f s P a d d e d ] [ [ 2 ] ] , i i ++ ,

84 R e s u l t [ [ j j +1 , i i + 1 ] ] = c o e f f s P a d d e d [ [ ( j j +1)−2, i i + 1 ] ]∗SpSum [ l−

m, ( j j −2)∗m/ 2 , i i ]

85 + c o e f f s P a d d e d [ [ ( j j +1)−1, i i + 1 ] ]∗SpSum [ ( j j −2)∗m/ 2 + 1 , ( j j −1)∗

m/ 2 , i i ]

86 + c o e f f s P a d d e d [ [ ( j j +1)−1, i i + 1 ] ]∗SpSum [ ( j j −1)∗m/ 2 + 1 , l , i i ] ;

87 ]

88

89

90 F u n c t i o n a l F o r m s = Map[ Tota l [# ]& , R e s u l t ] ;

91 F u n c t i o n a l F o r m s [ [ −1] ] = Tota l [ c o e f f s [ [ −1 ] ] ]∗ n ;

92 F u n c t i o n a l F o r m s = Map[ S i m p l i f y [# ]& , F u n c t i o n a l F o r m s ] ;

93 lowerBounds = Range [−1 , numSec t ions + 1 −1]∗m/ 2 ;

94 upperBounds = Range [ 0 , numSec t ions +1]∗m/ 2 ;

95 lowerBounds [ [ 1 ] ] = −I n f i n i t y ;

96 upperBounds [ [ −1] ] = I n f i n i t y ;
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97

98 l i m i t s = MapThread [ #1 <= l <= #2 &, { lowerBounds ,

upperBounds } ] ;

99

100 newFunc [ l ] := P i e c e w i s e [ P a r t i t i o n [ R i f f l e [ F u n c t i o n a l F o r m s ,

l i m i t s ] , 2 ] ] ;

101 nns3d [ l ] = P i e c e w i s e [ P a r t i t i o n [ R i f f l e [ F u n c t i o n a l F o r m s ,

l i m i t s ] , 2 ] ] ;

102 nns3d [ L ]

103

104 (∗ T h i s p o r t i o n e x t e n d s t h e r e s u l t s from 3D t o 4D. T h i s core

loop can be r e p e a t e d aga in t o expand t h e r e s u l t s t o

h i g h e r d i m e n s i o n s ∗ )

105 Element [m&&n , I n t e g e r s ] ;

106 coef fsAndLims = Map[ C o e f f i c i e n t L i s t [ # , l ]& , newFunc [ l ] ] ;

107 c o e f f s = F l a t t e n [Map[ D e l e t e [ # , 2 ] & , coef f sAndLims [ [ 1 ] ] ] , 1 ] ;

108 c o e f f L i m s = F l a t t e n [Map[ D e l e t e [ # , 1 ] & , coef f sAndLims [ [ 1 ] ] ] ,

1 ] ;

109

110 numSec t ions = Dimensions [ c o e f f L i m s ] [ [ 1 ] ] ;

111 bounds = Range [ 0 , numSect ions −1]∗m/ 2 ;

112 bounds [ [ −1] ] = I n f i n i t y ;

113

114 maxDim = Max[ F l a t t e n [Map[ Dimensions [ # ] &, c o e f f s , 1 ] , 1 ] ] ;

115 c o e f f s P a d d e d = Map[ PadRight [ # , maxDim]& , c o e f f s , 1 ] ;

116
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117 SpSum [ a , b , exp ] := I f [ exp == 0 , Sum[ 1 , {p , a , b } ] ,Sum[ p ˆ

exp ,{ p , a , b } ] ] ; (∗ I f exp i s 0 we ’ re j u s t summing 1 from a

t o b , o t h e r w i s e we need t o a c t u a l l y worry abou t

f u n c t i o n a l form o f p ∗ )

118

119 R e s u l t = C o n s t a n t A r r a y [ 0 , { numSec t ions +2 , Dimensions [

c o e f f s P a d d e d ] [ [ 2 ] ] } ] ; (∗ n u m S e c t i o n s +2 because we ’ re

add ing on a n o t h e r d imens ion , so two more m/ 2 s i z e d

s e c t i o n s ∗ )

120

121 (∗ V e r s i o n w i t h o u t F loor ∗ )

122 For [ i i =0 , i i <Dimensions [ c o e f f s P a d d e d ] [ [ 2 ] ] , i i ++ ,

123 j j j = 1 ; (∗ s t a r t a t 1 s i n c e f i r s t domain i s a c t u a l l y domain

−1 ∗ )

124 R e s u l t [ [ j j j +1 , i i + 1 ] ] = c o e f f s P a d d e d [ [ ( j j j +1) , i i + 1 ] ]∗SpSum [ 0 ,

l , i i ] ;

125 ]

126

127 For [ i i =0 , i i <Dimensions [ c o e f f s P a d d e d ] [ [ 2 ] ] , i i ++ ,

128 j j j = 2 ;

129 R e s u l t [ [ j j j +1 , i i + 1 ] ] = c o e f f s P a d d e d [ [ ( j j j +1)−1, i i + 1 ] ]∗SpSum

[ 0 , ( j j j −1)∗m/ 2 , i i ]

130 + c o e f f s P a d d e d [ [ ( j j j +1)−0, i i + 1 ] ]∗SpSum [ ( j j j −1)∗m/ 2 + 1 , l , i i

] ;

131 ]

132

133 For [ j j =3 , j j < numSect ions , j j ++ ,
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134 For [ i i =0 , i i <Dimensions [ c o e f f s P a d d e d ] [ [ 2 ] ] , i i ++ ,

135 R e s u l t [ [ j j +1 , i i + 1 ] ] = c o e f f s P a d d e d [ [ ( j j +1)−2, i i + 1 ] ]∗SpSum [ l−

m, ( j j −2)∗m/ 2 , i i ]

136 + c o e f f s P a d d e d [ [ ( j j +1)−1, i i + 1 ] ]∗SpSum [ ( j j −2)∗m/ 2 + 1 , ( j j −1)∗

m/ 2 , i i ]

137 + c o e f f s P a d d e d [ [ ( j j +1)−0, i i + 1 ] ]∗SpSum [ ( j j −1)∗m/ 2 + 1 , l , i i ] ;

138 ]

139 ]

140

141 j j = numSec t ions ;

142 For [ i i =0 , i i <Dimensions [ c o e f f s P a d d e d ] [ [ 2 ] ] , i i ++ ,

143 R e s u l t [ [ j j +1 , i i + 1 ] ] = c o e f f s P a d d e d [ [ ( j j +1)−2, i i + 1 ] ]∗SpSum [ l−

m, ( j j −2)∗m/ 2 , i i ]

144 + c o e f f s P a d d e d [ [ ( j j +1)−1, i i + 1 ] ]∗SpSum [ ( j j −2)∗m/ 2 + 1 , ( j j −1)∗

m/ 2 , i i ]

145 + c o e f f s P a d d e d [ [ ( j j +1)−1, i i + 1 ] ]∗SpSum [ ( j j −1)∗m/ 2 + 1 , l , i i ] ;

146 ]

147

148

149 F u n c t i o n a l F o r m s = Map[ Tota l [# ]& , R e s u l t ] ;

150 F u n c t i o n a l F o r m s [ [ −1] ] = Tota l [ c o e f f s [ [ −1 ] ] ]∗ n ;

151 F u n c t i o n a l F o r m s = Map[ S i m p l i f y [# ]& , F u n c t i o n a l F o r m s ] ;

152 lowerBounds = Range [−1 , numSec t ions + 1 −1]∗m/ 2 ;

153 upperBounds = Range [ 0 , numSec t ions +1]∗m/ 2 ;

154 lowerBounds [ [ 1 ] ] = −I n f i n i t y ;

155 upperBounds [ [ −1] ] = I n f i n i t y ;

156
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157 l i m i t s = MapThread [ #1 <= l <= #2 &, { lowerBounds ,

upperBounds } ] ;

158

159

160 newFunc2 [ l ] := P i e c e w i s e [ P a r t i t i o n [ R i f f l e [ F u n c t i o n a l F o r m s ,

l i m i t s ] , 2 ] ] ;

161 nns4d [ l ] := P i e c e w i s e [ P a r t i t i o n [ R i f f l e [ F u n c t i o n a l F o r m s ,

l i m i t s ] , 2 ] ] ;

162 nns4d [ L ]

163

164

165 (∗ T h i s p o r t i o n e x t e n d s t h e r e s u l t s from 4D t o 5D. T h i s core

loop can be r e p e a t e d aga in t o expand t h e r e s u l t s t o

h i g h e r d i m e n s i o n s ∗ )

166 Element [m&&n , I n t e g e r s ] ;

167 coef fsAndLims = Map[ C o e f f i c i e n t L i s t [ # , l ]& , newFunc2 [ l ] ] ;

168 c o e f f s = F l a t t e n [Map[ D e l e t e [ # , 2 ] & , coef f sAndLims [ [ 1 ] ] ] , 1 ] ;

169 c o e f f L i m s = F l a t t e n [Map[ D e l e t e [ # , 1 ] & , coef f sAndLims [ [ 1 ] ] ] ,

1 ] ;

170

171 numSec t ions = Dimensions [ c o e f f L i m s ] [ [ 1 ] ] ;

172 bounds = Range [ 0 , numSect ions −1]∗m/ 2 ;

173 bounds [ [ −1] ] = I n f i n i t y ;

174

175 maxDim = Max[ F l a t t e n [Map[ Dimensions [ # ] &, c o e f f s , 1 ] , 1 ] ] ;

176 c o e f f s P a d d e d = Map[ PadRight [ # , maxDim]& , c o e f f s , 1 ] ;

177
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178 SpSum [ a , b , exp ] := I f [ exp == 0 , Sum[ 1 , {p , a , b } ] ,Sum[ p ˆ

exp ,{ p , a , b } ] ] ; (∗ I f exp i s 0 we ’ re j u s t summing 1 from a

t o b , o t h e r w i s e we need t o a c t u a l l y worry abou t

f u n c t i o n a l form o f p ∗ )

179

180 R e s u l t = C o n s t a n t A r r a y [ 0 , { numSec t ions +2 , Dimensions [

c o e f f s P a d d e d ] [ [ 2 ] ] } ] ; (∗ n u m S e c t i o n s +2 because we ’ re

add ing on a n o t h e r d imens ion , so two more m/ 2 s i z e d

s e c t i o n s ∗ )

181

182 (∗ V e r s i o n w i t h o u t F loor ∗ )

183 For [ i i =0 , i i <Dimensions [ c o e f f s P a d d e d ] [ [ 2 ] ] , i i ++ ,

184 j j j = 1 ; (∗ s t a r t a t 1 s i n c e f i r s t domain i s a c t u a l l y domain

−1 ∗ )

185 R e s u l t [ [ j j j +1 , i i + 1 ] ] = c o e f f s P a d d e d [ [ ( j j j +1) , i i + 1 ] ]∗SpSum [ 0 ,

l , i i ] ;

186 ]

187

188 For [ i i =0 , i i <Dimensions [ c o e f f s P a d d e d ] [ [ 2 ] ] , i i ++ ,

189 j j j = 2 ;

190 R e s u l t [ [ j j j +1 , i i + 1 ] ] = c o e f f s P a d d e d [ [ ( j j j +1)−1, i i + 1 ] ]∗SpSum

[ 0 , ( j j j −1)∗m/ 2 , i i ]

191 + c o e f f s P a d d e d [ [ ( j j j +1)−0, i i + 1 ] ]∗SpSum [ ( j j j −1)∗m/ 2 + 1 , l , i i

] ;

192 ]

193

194 For [ j j =3 , j j < numSect ions , j j ++ ,
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195 For [ i i =0 , i i <Dimensions [ c o e f f s P a d d e d ] [ [ 2 ] ] , i i ++ ,

196 R e s u l t [ [ j j +1 , i i + 1 ] ] = c o e f f s P a d d e d [ [ ( j j +1)−2, i i + 1 ] ]∗SpSum [ l−

m, ( j j −2)∗m/ 2 , i i ]

197 + c o e f f s P a d d e d [ [ ( j j +1)−1, i i + 1 ] ]∗SpSum [ ( j j −2)∗m/ 2 + 1 , ( j j −1)∗

m/ 2 , i i ]

198 + c o e f f s P a d d e d [ [ ( j j +1)−0, i i + 1 ] ]∗SpSum [ ( j j −1)∗m/ 2 + 1 , l , i i ] ;

199 ]

200 ]

201

202 j j = numSec t ions ;

203 For [ i i =0 , i i <Dimensions [ c o e f f s P a d d e d ] [ [ 2 ] ] , i i ++ ,

204 R e s u l t [ [ j j +1 , i i + 1 ] ] = c o e f f s P a d d e d [ [ ( j j +1)−2, i i + 1 ] ]∗SpSum [ l−

m, ( j j −2)∗m/ 2 , i i ]

205 + c o e f f s P a d d e d [ [ ( j j +1)−1, i i + 1 ] ]∗SpSum [ ( j j −2)∗m/ 2 + 1 , ( j j −1)∗

m/ 2 , i i ]

206 + c o e f f s P a d d e d [ [ ( j j +1)−1, i i + 1 ] ]∗SpSum [ ( j j −1)∗m/ 2 + 1 , l , i i ] ;

207 ]

208

209

210 F u n c t i o n a l F o r m s = Map[ Tota l [# ]& , R e s u l t ] ;

211 F u n c t i o n a l F o r m s [ [ −1] ] = Tota l [ c o e f f s [ [ −1 ] ] ]∗ n ;

212 F u n c t i o n a l F o r m s = Map[ S i m p l i f y [# ]& , F u n c t i o n a l F o r m s ] ;

213 lowerBounds = Range [−1 , numSec t ions + 1 −1]∗m/ 2 ;

214 upperBounds = Range [ 0 , numSec t ions +1]∗m/ 2 ;

215 lowerBounds [ [ 1 ] ] = −I n f i n i t y ;

216 upperBounds [ [ −1] ] = I n f i n i t y ;

217
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218 l i m i t s = MapThread [ #1 <= l <= #2 &, { lowerBounds ,

upperBounds } ] ;

219

220

221 newFunc3 [ l ] := P i e c e w i s e [ P a r t i t i o n [ R i f f l e [ F u n c t i o n a l F o r m s ,

l i m i t s ] , 2 ] ] ;

222 nns5d [ l ] := P i e c e w i s e [ P a r t i t i o n [ R i f f l e [ F u n c t i o n a l F o r m s ,

l i m i t s ] , 2 ] ] ;

223 nns5d [ L ]

224

225 (∗ The above o p e r a t i o n s can be r e p e a t e d i n d e f i n i t e l y t o

e x t e n d t h e c o n n e c t i o n / n o n s t a r t i n g g a t e r e s u l t s t o

a r b i t r a r y d i m e n s i o n s ∗ )
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APPENDIX B

WIRELENGTH MODELS FOR UP TO FIVE DIMENSIONS IN PYTHON 3.6

1

2 import numpy as np

3 import gmpy2 as gp

4

5 def c r e a t e l e n g t h v e c ( n , d , u s e v p a = F a l s e ) :

6 i f ( u s e v p a ) :

7 L = np . a r r a y ( [ gp . mpz ( t h i n g ) f o r t h i n g in

range ( d ∗ ( n−1) +1) ] )

8 e l s e :

9 L = np . l i n s p a c e ( 0 , d ∗ ( n−1) , d ∗ ( n−1) +1)

10

11 re turn L

12

13

14 def f2d ( L , n ) :

15 m = n−1

16

17 f2d = ( 0∗ (L<0)

18 + ( n ∗ ( n − L ) ∗ (L + 1) + 1 /2∗L∗∗2∗ (L + 1) − 1 /6∗L∗ (L +

1) ∗ (2∗L + 1) ) ∗((0<=L ) & ( L<=m) )

19 + ( − ( 1 / 6 ) ∗(−1 + L − 2∗n ) ∗ (L − 2∗n ) ∗ (1 + L − 2∗n ) ) ∗ ( (

m<L ) & ( L<=2∗m) )

20 + 0∗ (L>2∗m)
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21 )

22

23 re turn f2d

24

25

26 def f 2 d a l t ( L , n ) :

27 m = n−1

28 f2d = ( 0∗ (L<0)

29 + ((0<=L ) & ( L<=m) ) ∗ ( 1 / 6∗ ( 1 + L ) ∗(−L + L∗∗2 − 6∗L∗n

+ 6∗n ∗∗2) )

30 + ( (m<L ) & ( L<=2∗m) ) ∗ ( − (1 /6) ∗(−1 + L − 2∗n ) ∗ (L − 2∗

n ) ∗ (1 + L − 2∗n ) )

31 )

32

33 re turn f2d

34

35

36 def nns2d ( L , n ) :

37 nns2d = ( 0∗ (L<0)

38 + (−2+L−2∗(−1+n ) +2∗n ) ∗ ( (0<=L ) & ( L<=(1+n ) / 2 ) )

39 + (−L+1/4∗(3+2∗(−1+L )−n ) ∗∗2+n ) ∗ ( ( ( 1 + n ) /2<=L ) & ( L

<=−1+n ) )

40 + ( 1 / 4∗ ( 1 + n ) ∗∗2+n∗(−2+L−2∗(−1+n ) +n ) ) ∗ ( (−1+n<=L ) &

( L<=3/2∗(−1+n ) ) )

41 + (−(L−2∗n ) ∗ (1+L−n ) +n∗(−2+L−2∗(−1+n ) +n ) ) ∗ (

(3/2∗ (−1+ n )<=L ) & ( L<=2∗(−1+n ) ) )

42 + n∗∗2 ∗ ( L>2∗(−1+n ) )
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43 )

44

45 re turn nns2d

46

47

48 def ns2d ( L , n ) :

49 ns2d = n∗∗2 − nns2d ( L , n )

50

51 re turn ns2d

52

53

54 def nns3d ( L , n ) :

55 m = n−1

56

57 nns3d = ( 0∗ (L<=0)

58 + 1 /2∗L∗ (L+1) ∗((0<L ) & ( L <= m/ 2 ) )

59 + 1 / 2 4∗ ( 8∗L∗∗3 − 12∗L∗∗2∗m + n − n∗∗3 + 2∗L∗ (5 + 3∗n

∗∗2) ) ∗ ( (m/2<L ) & ( L<= m) )

60 + 1 / 2 4∗ ( 1 2∗L∗∗2∗m − 6∗L∗ (1 − 8∗n + 3∗n ∗∗2) + n ∗ (17 −

24∗n + 7∗n ∗∗2) ) ∗ ( (m < L ) & ( L <= 3∗m/ 2 ) )

61 + 1/24∗(−6 − 16∗L∗∗3 + 47∗n − 78∗n∗∗2 + 61∗n∗∗3 +

12∗L∗∗2∗(−3 + 7∗n ) − 2∗L∗ (13 − 60∗n + 63∗n ∗∗2) )

∗ ( ( 3∗m/2< L ) & ( L <=2∗m) )

62 + 1/24∗(−6 + 7∗n − 12∗L∗∗2∗n + 66∗n∗∗2 − 67∗n∗∗3 +

6∗L∗(−1 − 4∗n + 11∗n ∗∗2) ) ∗ ( ( 2∗m < L ) & ( L <= 5∗m

/ 2 ) )
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63 + ( L∗∗3 /3 + L∗∗2∗ (1 − 3∗n ) + n∗(−2 + 9∗n − 8∗n ∗∗2) +

L∗ ( 2 / 3 − 6∗n + 9∗n ∗∗2) ) ∗ ( ( 5∗m/ 2 < L ) & ( L <= 3∗m

) )

64 + n ∗∗3∗ (3∗m < L )

65 )

66

67 re turn nns3d

68

69

70 def ns3d ( L , n ) :

71 ns3d = n∗∗3 − nns3d ( L , n )

72

73 re turn ns3d

74

75

76 def f3d ( L , n ) :

77 m = n−1

78 f3d = ( 0∗ (L<0)

79 − ( 1 / 1 2 0 ) ∗ ( ( 1 + L ) ∗ (2 + L ) ∗ (L∗∗3 − 60∗n∗∗3 −

3∗L∗∗2∗ (1 + 5∗n ) + L∗ (2 + 15∗n + 60∗n

∗∗2) ) ) ∗((0<=L ) & ( L<=m) )

80 + 1 / 1 2 0∗ ( 2∗L∗∗5 − 30∗L∗∗4∗n − 30∗L∗∗2∗n∗(−2

− 6∗n + 11∗n ∗∗2) + 10∗L∗∗3∗(−1 − 3∗n +

15∗n ∗∗2) − 3∗n ∗ (4 + 20∗n − 15∗n∗∗2 − 80∗n

∗∗3 + 31∗n ∗∗4) + L∗ (8 + 30∗n − 105∗n∗∗2 −

360∗n∗∗3 + 315∗n ∗∗4) ) ∗ ( (m<L ) & ( L<=2∗m) )
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81 − (1 /120) ∗ ( ( 1 + L − 3∗n ) ∗ (2 + L − 3∗n ) ∗ (L∗∗3

− 3∗L∗∗2∗ (1 + 3∗n ) − 3∗n ∗ (2 + 9∗n + 9∗n

∗∗2) + L∗ (2 + 18∗n + 27∗n ∗∗2) ) ) ∗ ( ( 4∗m<L )

& ( L<=3∗m) )

82 − (1 /120) ∗ (1 + L − 3∗n ) ∗ (2 + L − 3∗n ) ∗ (L∗∗3 −

3∗L∗∗2∗ (1 + 3∗n ) − 3∗n ∗ (2 + 9∗n + 9∗n

∗∗2) + L∗ (2 + 18∗n + 27∗n ∗∗2) ) ∗ ( ( 2∗m<L ) &

( L<=3∗m) )

83 + 0∗ (L>3∗m)

84 )

85

86 re turn f3d

87

88

89 def nns4d ( L , n ) :

90 m = n−1

91 nns4d =( 0∗ (L<=0)

92 + 1 /6∗L∗ (2 + 3∗L + L∗∗2) ∗((0<L ) & ( L<=m/ 2 ) )

93 + 1 / 1 9 2∗ ( 1 6∗L∗∗4 − 32∗L∗∗3∗(−2 + n ) + (−1 +

n ) ∗∗2∗(−3 − 2∗n + n ∗∗2) + 8∗L∗∗2∗ (13 − 6∗

n + 3∗n ∗∗2) − 8∗L∗(−7 + n − 3∗n∗∗2 + n

∗∗3) ) ∗ ( (m/2<L ) & ( L<=m) )

94 + 1/192∗(−3 + 32∗L∗∗3∗(−2 + n ) + 164∗n −

270∗n∗∗2 + 124∗n∗∗3 − 15∗n∗∗4 − 24∗L

∗∗2∗ (7 − 14∗n + 3∗n ∗∗2) + 8∗L∗(−13 + 67∗n

− 45∗n∗∗2 + 7∗n ∗∗3) ) ∗ ( (m<L ) & ( L <=3∗m

/ 2 ) )
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95 + 1/96∗(−21 − 24∗L∗∗4 + 196∗n − 378∗n∗∗2 +

332∗n∗∗3 − 129∗n∗∗4 + 16∗L∗∗3∗(−7 + 10∗n )

− 24∗L∗∗2∗ (8 − 22∗n + 15∗n ∗∗2) + 16∗L

∗(−8 + 37∗n − 45∗n∗∗2 + 22∗n ∗∗3) ) ∗ ( (3∗m

/2<L ) & ( L <=2∗m) )

96 + 1/96∗(−21 + L∗∗3∗ (16 − 32∗n ) − 28∗n + 486∗

n∗∗2 − 692∗n∗∗3 + 255∗n∗∗4 + 24∗L∗∗2∗ (1 −

10∗n + 9∗n ∗∗2) − 16∗L∗ (1 + 17∗n − 51∗n

∗∗2 + 26∗n ∗∗3) ) ∗ ( (2∗m<L ) & ( L<= 5∗m/ 2 ) )

97 + 1 / 1 9 2∗ ( 4 5 + 48∗L∗∗4 − 876∗n + 3522∗n∗∗2 −

4884∗n∗∗3 + 2385∗n∗∗4 − 32∗L∗∗3∗(−8 + 17∗

n ) + 24∗L∗∗2∗ (19 − 90∗n + 93∗n ∗∗2) − 8∗L

∗(−37 + 323∗n − 729∗n∗∗2 + 479∗n ∗∗3) )

∗ ( ( 5∗m/2<L ) & ( L<=3∗m) )

98 + 1 / 1 9 2∗ ( 3 2∗L∗∗3∗n − 24∗L∗∗2∗(−1 − 6∗n + 15∗

n ∗∗2) + 8∗L∗ (9 + n − 135∗n∗∗2 + 169∗n ∗∗3)

− 3∗(−15 + 68∗n + 122∗n∗∗2 − 676∗n∗∗3 +

501∗n ∗∗4) ) ∗ ( (3∗m<L ) & ( L<=7∗m/ 2 ) )

99 + 1/12∗(−L∗∗4 + 2∗L∗∗3∗(−3 + 8∗n ) + L

∗∗2∗(−11 + 72∗n − 96∗n ∗∗2) − 4∗n∗(−6 +

44∗n − 96∗n∗∗2 + 61∗n ∗∗3) + L∗(−6 + 88∗n

− 288∗n∗∗2 + 256∗n ∗∗3) ) ∗ ( (7∗m/2<L ) & ( L

<= 4∗m) )

100 + n ∗∗4∗ (4∗m < L )

101 )

102

103 re turn nns4d
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104

105

106 def ns4d ( L , n ) :

107 ns4d = n∗∗4 − nns4d ( L , n )

108 re turn ns4d

109

110

111 def nns5d ( L , n ) :

112 m = n−1;

113 nns5d = ( 0∗ ( L<=0)

114 + 1 /24∗L∗ (6+11∗L+6∗L∗∗2+L∗∗3) ∗ ((0<L ) & (

L<=1/2∗m) )

115 + (−30+32∗L∗∗5−80∗L∗∗4∗(−3+n ) +31∗n+20∗n

∗∗2−30∗n∗∗3+10∗n∗∗4−n∗∗5+80∗L∗∗3∗(9−4∗n+n

∗∗2)−40∗L∗∗2∗(−24+9∗n−6∗n∗∗2+n ∗∗3) +2∗L

∗(209−40∗n+90∗n∗∗2−40∗n∗∗3+5∗n ∗∗4) ) /1920

∗ ( ( 1 / 2 ∗m<L ) & ( L<=m) )

116 + (−30+80∗L∗∗4∗(−3+n ) +1759∗n−3340∗n∗∗2+2050∗

n∗∗3−470∗n∗∗4+31∗n∗∗5−80∗L∗∗3∗(17−20∗n+3∗

n ∗∗2) +40∗L∗∗2∗(−60+147∗n−66∗n∗∗2+7∗n ∗∗3)

−10∗L∗(131−664∗n+606∗n∗∗2−184∗n∗∗3+15∗n

∗∗4) ) /1920 ∗ ( (m<L ) & ( L<=3/2∗m) )

117 + (−360−128∗L∗∗5+1040∗L∗∗4∗m+3907∗n−8560∗n

∗∗2+8530∗n∗∗3−4520∗n∗∗4+1003∗n∗∗5−80∗L

∗∗3∗(41−80∗n+39∗n ∗∗2) +40∗L∗∗2∗(−118+363∗n

−336∗n∗∗2+115∗n ∗∗3)−2∗L∗(1371−6800∗n

+9510∗n∗∗2−6320∗n∗∗3+1695∗n ∗∗4) ) /1920 ∗
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( ( 3 / 2 ∗m<L ) & ( L<=2∗m) )

118 + (−360−240∗L∗∗4∗m−2237∗n +17040∗n∗∗2−27310∗n

∗∗3+15960∗n∗∗4−3093∗n∗∗5+80∗L∗∗3∗(15−48∗n

+25∗n ∗∗2)−120∗L∗∗2∗(−14+103∗n−144∗n

∗∗2+47∗n ∗∗3) +10∗L∗(33−1200∗n +3474∗n

∗∗2−2832∗n∗∗3+685∗n ∗∗4) ) /1920 ∗ ( ( 2∗m<L )

& ( L<=5/2∗m) )

119 + (810+192∗L∗∗5−13907∗n +57540∗n∗∗2−94810∗n

∗∗3+72210∗n∗∗4−21843∗n∗∗5−240∗L

∗∗4∗(−7+11∗n ) +80∗L∗∗3∗(69−228∗n+175∗n ∗∗2)

−120∗L∗∗2∗(−68+373∗n−594∗n∗∗2+297∗n ∗∗3)

+2∗L∗(2499−22200∗n +57870∗n∗∗2−59160∗n

∗∗3+22175∗n ∗∗4) ) /1920 ∗ ( ( 5 / 2 ∗m<L ) & ( L

<=3∗m) )

120 + (810−2963∗n−13020∗n∗∗2+60710∗n∗∗3−70350∗n

∗∗4+24813∗n∗∗5+80∗L∗∗4∗(−1+3∗n )−80∗L

∗∗3∗(3−36∗n+41∗n ∗∗2) +40∗L∗∗2∗ (8+177∗n

−594∗n∗∗2+405∗n ∗∗3)−10∗L∗(−135−264∗n

+3978∗n∗∗2−7176∗n∗∗3+3341∗n ∗∗4) ) /1920 ∗

( ( 3∗m<L ) & ( L<=7/2∗m) )

121 + (−420−128∗L∗∗5+13809∗n−90440∗n∗∗2+225350∗n

∗∗3−238420∗n∗∗4+92041∗n∗∗5+80∗L

∗∗4∗(−15+31∗n )−80∗L∗∗3∗(51−232∗n+237∗n

∗∗2) +40∗L∗∗2∗(−150+1185∗n−2652∗n∗∗2+1777∗

n ∗∗3)−2∗L∗(1721−23440∗n +90450∗n

∗∗2−131920∗n∗∗3+64725∗n ∗∗4) ) /1920 ∗

( ( 7 / 2 ∗m<L ) & ( L<=4∗m) )
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122 + (−420+3441∗n−80∗L∗∗4∗n−2120∗n∗∗2−30650∗n

∗∗3+68780∗n∗∗4−39031∗n∗∗5+80∗L∗∗3∗(−1−8∗n

+19∗n ∗∗2)−40∗L∗∗2∗ (12+15∗n−228∗n∗∗2+271∗n

∗∗3) +10∗L∗(−85+272∗n +1110∗n∗∗2−4336∗n

∗∗3+3439∗n ∗∗4) ) /1920 ∗ ( ( 4∗m<L ) & ( L

<=9/2∗m) )

123 + 1 / 6 0∗ ( L∗∗5−5∗L∗∗4∗(−2+5∗n ) +5∗L∗∗3∗(7−40∗n

+50∗n ∗∗2)−25∗L∗∗2∗(−2+21∗n−60∗n∗∗2+50∗n

∗∗3)−5∗n∗(24−250∗n+875∗n∗∗2−1250∗n

∗∗3+613∗n ∗∗4) +L∗(24−500∗n +2625∗n∗∗2−5000∗

n∗∗3+3125∗n ∗∗4) ) ∗ ( ( 9 / 2 ∗m<L ) & ( L<=5∗m) )

124 + n∗∗5 ∗ (5∗m<L )

125 )

126

127 re turn nns5d

128

129

130 def ns5d ( L , n ) :

131 ns5d = n∗∗5 − nns5d ( L , n )

132

133 re turn ns5d

134

135

136 def f4d ( L , n ) :

137 m = n−1

138 f4d = ( 0∗ (L<0)
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139 + ((0<=L ) & ( L<= m) ) ∗ ( ( 1 + L ) ∗ (2 + L ) ∗ (3 +

L ) ∗ (L∗∗4 + 840∗n∗∗4 − 2∗L∗∗3∗ (3 + 14∗n )

140 + L∗∗2∗ (11 + 84∗n + 252∗n ∗∗2)

141 − 2∗L∗ (3 + 28∗n + 126∗n∗∗2 + 420∗n ∗∗3) ) )

/5040

142 + ( (m < L ) & ( L <= 2∗m) ) ∗ ( 1 / 5 0 4 0 ) ∗(−3∗L∗∗7

+ 84∗L∗∗6∗n + 280∗L∗∗4∗n∗(−2 − 9∗n + 14∗

n ∗∗2) −

143 42∗L∗∗5∗(−1 − 4∗n + 20∗n ∗∗2) +

144 28∗L∗∗2∗n ∗ (29 + 180∗n + 160∗n∗∗2 − 990∗n∗∗3

+ 408∗n ∗∗4) −

145 7∗L∗∗3∗ (21 + 120∗n − 140∗n∗∗2 − 1800∗n∗∗3 +

1340∗n ∗∗4) +

146 4∗n∗(−36 − 252∗n − 623∗n∗∗2 + 945∗n∗∗3 +

2821∗n∗∗4 − 1953∗n∗∗5 +

147 358∗n ∗∗6) −

148 4∗L∗(−27 − 168∗n − 63∗n∗∗2 + 2205∗n∗∗3 +

3710∗n∗∗4 − 6615∗n∗∗5 +

149 1603∗n ∗∗6) )

150 + ( ( 2∗m < L ) & ( L <=3∗m) ) ∗ ( 1 / 5 0 4 0 ) ∗ (3∗L∗∗7

− 84∗L∗∗6∗n + 42∗L∗∗5∗(−1 − 2∗n + 22∗n

∗∗2) −

151 140∗L∗∗4∗n∗(−5 − 9∗n + 38∗n ∗∗2) −

152 28∗L∗∗2∗n ∗ (46 + 135∗n − 490∗n∗∗2 − 810∗n∗∗3

+ 1176∗n ∗∗4) +

153 7∗L∗∗3∗ (21 + 60∗n − 640∗n∗∗2 − 1080∗n∗∗3 +

2500∗n ∗∗4) −
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154 4∗n∗(−72 − 252∗n + 791∗n∗∗2 + 2835∗n∗∗3 −

2653∗n∗∗4 − 5103∗n∗∗5 +

155 3194∗n ∗∗6) +

156 4∗L∗(−27 − 84∗n + 903∗n∗∗2 + 2835∗n∗∗3 −

4970∗n∗∗4 − 8505∗n∗∗5 +

157 8141∗n ∗∗6) )

158 + ( ( 3∗m < L ) & ( L<=4∗m) ) ∗ ( ( −1 /5040) ∗ (2 + L

− 4∗n ) ∗ (3 + L − 4∗n ) ∗ (L∗∗5 − 5∗L∗∗4∗ (1 +

4∗n ) +

159 5∗L∗∗3∗ (1 + 16∗n + 32∗n ∗∗2) −

160 5∗L∗∗2∗(−1 + 12∗n + 96∗n∗∗2 + 128∗n ∗∗3) −

161 8∗n∗(−3 − 10∗n + 40∗n∗∗2 + 160∗n∗∗3 + 128∗n

∗∗4) +

162 2∗L∗(−3 − 20∗n + 120∗n∗∗2 + 640∗n∗∗3 + 640∗n

∗∗4) ) )

163 # + ( ( 3∗m< L ) & ( L<=4∗m) ) ∗ (−1) ∗ ( ( ( 2 + L−4∗n )

∗(3+L−4∗n ) ∗ ( L∗∗5−5∗L∗∗4∗(1+4∗n ) +5∗L∗∗3∗(1+16∗n+32∗n ∗∗2)

−5∗L∗∗2∗(−1+12∗n+96∗n∗∗2+128∗n ∗∗3)−8∗n∗(−3−10∗n+40∗n

∗∗2+160∗n∗∗3+128∗n ∗∗4) +2∗L∗(−3−20∗n+120∗n∗∗2+640∗n

∗∗3+640∗n ∗∗4) ) ) / 5 0 4 0 )

164 )

165

166 re turn f4d

167

168

169 def f5d ( L , n ) :

170 m = n−1;
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171

172 f5d = ( 0∗ (L<0)

173 + ((0<=L ) & ( L<=1∗m) ) ∗ (−1∗ ( ( (1+L ) ∗ (2+L )

∗ (3+L ) ∗ (4+L ) ∗ (L∗∗5−15120∗n∗∗5−5∗L

∗∗4∗ (2+9∗ n ) +5∗L∗∗3∗ (7+54∗ n+144∗n ∗∗2)−5∗L

∗∗2∗ (10+99∗ n+432∗n∗∗2+1008∗n ∗∗3) +6∗L

∗ (4+45∗ n+240∗n∗∗2+840∗n∗∗3+2520∗n ∗∗4) ) )

/ 3 6 2 8 8 0 ) )

174 + ( ( 1∗m<L ) & ( L<=2∗m) ) ∗ ( 1 / 3 6 2 8 8 0 ) ∗ (4∗L

∗∗9−180∗L∗∗8∗n+60∗L∗∗7∗(−2−9∗n+51∗n ∗∗2)

−420∗L∗∗6∗n∗(−7−36∗n+61∗n ∗∗2)−210∗L∗∗4∗n

∗ (64+480∗ n+755∗n∗∗2−3360∗n∗∗3+1431∗n ∗∗4)

+42∗L∗∗5∗ (26+180∗n−195∗n∗∗2−3600∗n

∗∗3+2775∗n ∗∗4)−30∗L∗∗2∗n∗(−572−4872∗n

−14245∗n∗∗2+3360∗n∗∗3+89355∗n∗∗4−68544∗n

∗∗5+11766∗n ∗∗6) +10∗L∗∗3∗(−328−2646∗n

−3171∗n∗∗2+32760∗n∗∗3+110355∗n∗∗4−168840∗

n∗∗5+43890∗n ∗∗6)−5∗n ∗ (576+5184∗ n +18620∗n

∗∗2+29232∗n∗∗3−74571∗n∗∗4−164304∗n

∗∗5+158730∗n∗∗6−51552∗n∗∗7+5509∗n ∗∗8) +3∗L

∗ (768+6480∗ n +14620∗n∗∗2−35280∗n

∗∗3−281645∗n∗∗4−285600∗n∗∗5+885010∗n

∗∗6−384720∗n∗∗7+50895∗n ∗∗8) )

175 + ( ( 2∗m<L ) & ( L<=3∗m) ) ∗ ( 1 / 1 2 0 9 6 0 ) ∗(−2∗L

∗∗9+90∗L∗∗8∗n−60∗L∗∗7∗(−1−3∗n+27∗n ∗∗2)

+420∗L∗∗6∗n∗(−4−12∗n+37∗n ∗∗2) +210∗L∗∗4∗n

∗ (43+200∗n−305∗n∗∗2−1520∗n∗∗3+1507∗n ∗∗4)
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−42∗L∗∗5∗ (13+60∗n−375∗n∗∗2−1320∗n

∗∗3+2115∗n ∗∗4) +30∗L∗∗2∗n∗(−464−2576∗n

+1183∗n∗∗2+27440∗n∗∗3+4935∗n∗∗4−65856∗n

∗∗5+31534∗n ∗∗6)−10∗L∗∗3∗(−164−882∗n +4193∗

n∗∗2+26880∗n∗∗3−8785∗n∗∗4−105000∗n

∗∗5+70490∗n ∗∗6) +L∗(−1152−6480∗n +25820∗n

∗∗2+216720∗n∗∗3+162995∗n∗∗4−1192800∗n

∗∗5−575470∗n∗∗6+1953840∗n∗∗7−694065∗n ∗∗8)

+5∗n ∗ (576+3456∗ n+652∗n∗∗2−37968∗n

∗∗3−54663∗n∗∗4+127344∗n∗∗5+95058∗n

∗∗6−153312∗n∗∗7+43049∗n ∗∗8) )

176 + ( ( 3∗m<L ) & ( L<=4∗m) ) ∗ ( 1 / 3 6 2 8 8 0 ) ∗ (4∗L

∗∗9−180∗L∗∗8∗n−1260∗L∗∗6∗n∗(−3−4∗n+29∗n

∗∗2) +60∗L∗∗7∗(−2−3∗n+57∗n ∗∗2)−630∗L∗∗4∗n

∗ (36+80∗n−565∗n∗∗2−640∗n∗∗3+1679∗n ∗∗4)

+42∗L∗∗5∗ (26+60∗n−1185∗n∗∗2−1440∗n

∗∗3+5805∗n ∗∗4)−90∗L∗∗2∗n∗(−428−1176∗n

+8267∗n∗∗2+17920∗n∗∗3−40845∗n∗∗4−43008∗n

∗∗5+58862∗n ∗∗6) +10∗L∗∗3∗(−328−882∗n

+18543∗n∗∗2+40320∗n∗∗3−149415∗n

∗∗4−161280∗n∗∗5+298830∗n ∗∗6)−15∗n

∗ (576+1728∗n−12388∗n∗∗2−37632∗n∗∗3+73941∗

n∗∗4+172032∗n∗∗5−179622∗n∗∗6−196608∗n

∗∗7+153781∗n ∗∗8) +3∗L∗ (768+2160∗n−49420∗n

∗∗2−141120∗n∗∗3+486185∗n∗∗4+1075200∗n

∗∗5−1630090∗n∗∗6−1720320∗n∗∗7+1777245∗n

∗∗8) )
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177 + ( ( 6∗m<L ) & ( L<=5∗m) ) ∗ (−1) ∗ ( ( ( 3 + L−5∗n )

∗ (4+L−5∗n ) ∗ (L∗∗7−7∗L∗∗6∗ (1+5∗ n ) +7∗L

∗∗5∗ (1+30∗ n+75∗n ∗∗2)−35∗L∗∗4∗(−1+5∗n+75∗n

∗∗2+125∗n ∗∗3) +7∗L∗∗3∗(−8−100∗n+250∗n

∗∗2+2500∗n∗∗3+3125∗n ∗∗4)−7∗L∗∗2∗(4−120∗n

−750∗n∗∗2+1250∗n∗∗3+9375∗n∗∗4+9375∗n ∗∗5)

−5∗n ∗ (48+140∗n−1400∗n∗∗2−4375∗n∗∗3+4375∗n

∗∗4+21875∗n∗∗5+15625∗n ∗∗6) +L∗ (48+280∗n

−4200∗n∗∗2−17500∗n∗∗3+21875∗n∗∗4+131250∗n

∗∗5+109375∗n ∗∗6) ) ) / 3 6 2 8 8 0 )

178 + ( ( 4∗m<L ) & ( L<=5∗m) ) ∗ ( ( ( 3 + L − 5∗n ) ∗ (4

+ L − 5∗n ) ∗ (L∗∗7 − 7∗L∗∗6∗ (1 + 5∗n ) + 7∗L

∗∗5∗ (1 + 30∗n + 75∗n ∗∗2) − 35∗L∗∗4∗(−1 +

5∗n + 75∗n∗∗2 + 125∗n ∗∗3) + 7∗L∗∗3∗(−8 −

100∗n + 250∗n∗∗2 + 2500∗n∗∗3 + 3125∗n ∗∗4)

− 7∗L∗∗2∗ (4 − 120∗n − 750∗n∗∗2 + 1250∗n

∗∗3 + 9375∗n∗∗4 + 9375∗n ∗∗5) − 5∗n ∗ (48 +

140∗n − 1400∗n∗∗2 − 4375∗n∗∗3 + 4375∗n∗∗4

+ 21875∗n∗∗5 + 15625∗n ∗∗6) + L∗ (48 +

280∗n − 4200∗n∗∗2 − 17500∗n∗∗3 + 21875∗n

∗∗4 + 131250∗n∗∗5 + 109375∗n ∗∗6) ) )

/ (−362880) )

179 + ( ( 8∗m<L ) & ( L<=5∗m) ) ∗ (−1) ∗ ( ( ( 3 + L − 5∗

n ) ∗ (4 + L − 5∗n ) ∗ ( L∗∗7 − ( 7∗L∗∗6∗ (1 +

5∗n ) + 35∗L∗∗4∗(−1 + 5∗n + 75∗n∗∗2 + 125∗

n ∗∗3) + 7∗L∗∗2∗ (4 − 120∗n − 750∗n∗∗2 +

1250∗n∗∗3 + 9375∗n∗∗4 + 9375∗n ∗∗5) + 5∗n
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∗ (48 + 140∗n − 1400∗n∗∗2 − 4375∗n∗∗3 +

4375∗n∗∗4 + 21875∗n∗∗5 + 15625∗n ∗∗6) ) +

7∗L∗∗5∗ (1 + 30∗n + 75∗n ∗∗2) + 7∗L∗∗3∗(−8

− 100∗n + 250∗n∗∗2 + 2500∗n∗∗3 + 3125∗n

∗∗4) + L∗ (48 + 280∗n − 4200∗n∗∗2 − 17500∗

n∗∗3 + 21875∗n∗∗4 + 131250∗n∗∗5 + 109375∗

n ∗∗6) ) ) / 3 6 2 8 8 0 )

180 )

181

182 # Need t o round due t o f l o a t i n g −p o i n t / i n t e g e r e r r o r s

i n t h e t a i l . Even u i n t 6 4 i s n o t l a r g e enough t o

d e a l w i t h t h e numbers i n t h e t a i l w i t h o u t r u n n i n g

i n t o n u m e r i c a l i s s u e s

183 # f 5 d r = np . a r r a y ( [ np . round ( t h i n g ) f o r t h i n g i n f 5 d ] )

184

185 re turn f5d

186

187

188 def nc2d ( L , n ) :

189 nc2d = f2d ( L , n ) / ns2d ( L , n )

190

191 re turn nc2d

192

193

194 def nc3d ( L , n ) :

195 nc3d = f3d ( L , n ) / ns3d ( L , n )

196 re turn nc3d
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197

198

199 def nc4d ( L , n ) :

200 nc4d = f4d ( L , n ) / ns4d ( L , n )

201 re turn nc4d

202

203

204 def nc5d ( L , n ) :

205 nc5d = f5d ( L , n ) / ns5d ( L , n )

206 re turn nc5d

207

208

209 def nb ( nc ) :

210 nb = np . c o n c a t e n a t e ( ( [ 0 , 0 ] , np . cumsum ( nc [ 1 : −1 ] ) ) )

211 re turn nb

212

213

214 def a p p r o x t a c d i f f ( x , b , p ) :

215 a p p r o x t a c d i f f = ((−b∗∗p +(1+ b ) ∗∗p )

216 +(−b∗∗(−1+p ) +(1+ b ) ∗∗(−1+p ) ) ∗p ∗ ( x−b )

217 +1/2∗(−b∗∗(−2+p ) +(1+ b ) ∗∗(−2+p ) ) ∗(−1+p ) ∗p ∗ ( x−

b ) ∗∗2

218 +1/6∗(−b∗∗(−3+p ) +(1+ b ) ∗∗(−3+p ) ) ∗(−2+p ) ∗(−1+p

) ∗p ∗ ( x−b ) ∗∗3

219 +1/24∗(−b∗∗(−4+p ) +(1+ b ) ∗∗(−4+p ) ) ∗(−3+p ) ∗(−2+

p ) ∗(−1+p ) ∗p ∗ ( x−b ) ∗∗4
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220 +1/120∗(−b∗∗(−5+p ) +(1+ b ) ∗∗(−5+p ) ) ∗(−4+p )

∗(−3+p ) ∗(−2+p ) ∗(−1+p ) ∗p ∗ ( x−b ) ∗∗5

221 +1/720∗(−b∗∗(−6+p ) +(1+ b ) ∗∗(−6+p ) ) ∗(−5+p )

∗(−4+p ) ∗(−3+p ) ∗(−2+p ) ∗(−1+p ) ∗p ∗ ( x−b ) ∗∗6

222 )

223

224 re turn a p p r o x t a c d i f f

225

226

227 def t a c v t a i l a p p r o x ( p , Nb , Nc ) :

228 t a c v t a i l a p p r o x = ( ( ( 1 + Nb ) ∗∗p −Nb∗∗p ) −

a p p r o x t a c d i f f ( Nb+Nc , Nb , p ) )

229

230 re turn t a c v t a i l a p p r o x

231

232

233 def t a c v ( p , Nb , Nc ) :

234 t a c v = ( ( ( 1 + Nb ) ∗∗p −Nb∗∗p ) − ( ( 1 + Nb+Nc ) ∗∗p − ( Nb+

Nc ) ∗∗p ) )

235

236 re turn t a c v

237

238

239 def p r o b v h e a d ( a lpha , k , p , n , Nb , Nc ) :

240 p r o b v h e a d = ( a l p h a ∗k / ( Nc ) ) ∗ ( t a c v ( p , ( Nb ) , ( Nc ) ) )

241

242 re turn p r o b v h e a d
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243

244

245 def p r o b v t a i l ( a lpha , k , p , n , Nb , Nc ) :

246 p r o b v t a i l = ( a l p h a ∗k / ( Nc ) ) ∗ ( t a c v t a i l a p p r o x ( p , ( Nb

) , ( Nc ) ) )

247

248 re turn p r o b v t a i l

249

250

251 def probv ( a lpha , k , p , n , Nb , Nc , nd iv =3) :

252 probv = ( a l p h a ∗k / ( Nc ) ) ∗ ( np . c o n c a t e n a t e ( ( t a c v ( p , Nb

[ : round ( n / nd iv ) ] , Nc [ : round ( n / nd iv ) ] ) ,

t a c v t a i l a p p r o x ( p , Nb [ round ( n / nd iv ) : ] , Nc [ round (

n / nd iv ) : ] ) ) ) )

253

254 re turn probv

255

256

257 def prob2d ( a lpha , k , p , n , L ) :

258 nc = nc2d ( L , n )

259 prob2d = probv ( a lpha , k , p , n , nb ( nc ) , nc , nd iv =1 e2 )

260

261 re turn prob2d

262

263

264 def prob3d ( a lpha , k , p , n , L ) :

265 nc = nc3d ( L , n )
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266 prob3d = probv ( a lpha , k , p , n , nb ( nc ) , nc )

267

268 re turn prob3d

269

270

271 def prob4d ( a lpha , k , p , n , L ) :

272 nc = nc4d ( L , n )

273 prob4d = probv ( a lpha , k , p , n , nb ( nc ) , nc )

274

275 re turn prob4d

276

277

278 def prob5d ( a lpha , k , p , n , L ) :

279 nc = nc5d ( L , n )

280 prob5d = probv ( a lpha , k , p , n , nb ( nc ) , nc )

281

282 re turn prob5d

283

284

285 def wld2d ( a lpha , k , p , n , L ) :

286 wld2d = f2d ( L , n ) ∗ prob2d ( a lpha , k , p , n , L )

287

288 re turn wld2d

289

290

291 def wld3d ( a lpha , k , p , n , L ) :

292 wld3 = f3d ( L , n ) ∗ prob3d ( a lpha , k , p , n , L )
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293

294 re turn wld3

295

296

297 def wld4d ( a lpha , k , p , n , L ) :

298 wld4 = f4d ( L , n ) ∗ prob4d ( a lpha , k , p , n , L )

299

300 re turn wld4

301

302

303 def wld5d ( a lpha , k , p , n , L ) :

304 wld5 = f5d ( L , n ) ∗ prob5d ( a lpha , k , p , n , L )

305

306 re turn wld5

307

308

309 w l d i c t = {

310 2 : wld2d ,

311 3 : wld3d ,

312 4 : wld4d ,

313 5 : wld5d ,

314 }

315

316

317 def wld ( dim , a lpha , k , p , n , u s e v p a = F a l s e ) :

318 L = c r e a t e l e n g t h v e c ( n , dim , u s e v p a )

319 re turn ( L , w l d i c t [ dim ] ( a lpha , k , p , n , L ) )
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320

321

322 def g e n s y s t e m s t a t i s t i c s ( d imens ion , num gates , a lpha , k , p ,

u s e v p a = F a l s e , c h o p z e r o = F a l s e ) :

323

324 n = round ( num ga te s ∗∗ ( 1 / d imens ion ) ) # number o f

g a t e s a long one edge

325 ( L gp , w l d i s t g p ) = wld ( d imens ion , a lpha , k , p , n ,

u s e v p a )

326

327 i f c h o p z e r o :

328 L gp = L gp [ 1 : ]

329 w l d i s t g p = w l d i s t g p [ 1 : ]

330

331 w l t o t a l g p = np . sum ( L gp ∗ w l d i s t g p )

332 num wires = np . sum ( w l d i s t g p )

333 wl avg gp = w l t o t a l g p / num wires

334

335 re turn ( n , L gp , w l d i s t g p , w l t o t a l g p , num wires

, w l avg gp )
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