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SUMMARY

In the wake of data-intensive computing, von Neumann-based traditional architectures

and conventional methods of integration such as monolithic 2-D, are facing multiple chal-

lenges with reduced performance and higher costs. Such systems suffer from higher latency

of communication between the memory hierarchy and processing elements, high power

consumption, and increased hardware cost. To support the rising demand for emerging ap-

plications and data-intensive workloads, such systems require higher memory bandwidth

to reduce latency and more efficient devices to improve energy-per-operation. Addition-

ally, non-linear trends in device densities and energy per operation, and the rising design

costs of advanced technology nodes have made conventional feature scaling an expensive

pursuit.

Due to the challenges with traditional von Neumann-based devices, new paradigms for

compute, memory, communication, and integration have emerged. compute-in-memory

(CIM) has been proposed as a potential paradigm for energy-efficient compute by reduced

data movement and increased parallelism in image recognition and language translation

computations. Further, a growing need for higher logic-memory bandwidth and lower

chip-to-chip signal interconnection delay have led to a technological push towards hetero-

geneous integration. In this work, we propose methodologies to model physical effects and

optimize design parameters in heterogeneous integration (HI) architectures for compute-

in-memory hardware.

First, the design trade-offs of including a power delivery network (PDN) and metal-

insulator-metal (MIM) capacitors in bridge-chip based 2.5-D heterogeneous platforms are

investigated. It is demonstrated that including the PDN (and MIM capacitors) in the bridge-

chip can be an effective technique to reduce both DC-IR-drop and Ldi/dt noise. Next, to

address the power delivery challenges in three dimensional heterogeneous integration (3-

D-HI), a systematic technology and design space exploration of power delivery for 3-D-HI

xxiii



CIM systems is presented. A fast analysis flow facilitating early design-space exploration

between power delivery design parameters and CIM performance metrics is proposed. By

co-optimizing 3-D PDN and successive-approximation-register analog-to-digital converter

(SAR-ADC) design parameters a balanced 3-D CIM design is demonstrated compared to a

3-D unoptimized implementation at iso-power and iso-area.

Next, the thermal impact of different 3-D-HI architectures on the reliability of 3-D-

integrated binary resistive random access memory (RRAM) devices for CIM applications

is quantified. A device-integration reliability evaluation methodology is proposed that can

be used to quantify the direct impact of integration design parameters on CIM inference

accuracy. Using this flow, heterogeneous 3-D logic-memory CIM accelerator designs are

benchmarked against monolithic 2-D and balanced integration design parameters for max-

imized 3-D CIM inference accuracy are reported. The benchmark framework is released as

an open-source tool for the research community.

A 3-D polylithic architecture is proposed that represents a densely integrated system

divided into multiple device tiers where custom chiplets, such as power management IP, I/O

drivers, and memory are embedded into the back-end of a base tier with extreme efficient

signaling and large bandwidth density. Design optimization strategies for PDN in polylithic

3-D integration are presented. The scope includes a detailed design space exploration of

the power supply noise effects in polylithic 3-D architectures. The thermal constraints

for polylithic 3-D are evaluated with aggressive cooling to investigate thermal limits from

transient- and steady-state perspectives.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Semiconductor-based electronics have been supporting the world’s ever rising computa-

tional demands for many years. Improvements in power, performance, area, and cost

(PPAC) of such semiconductor-based hardware have been conventionally addressed by ar-

chitectural innovation, process technology gains, larger die sizes, and higher power con-

sumption. These PPAC improvement targets are evermore crucial with inexorable growth

of demand for computing technologies (traditional high performance computing (HPC),

compute intensive visualization) [1] and with the advent of data-intensive computing (emerg-

ing analytics and machine learning) [2]. Different applications have varied computational

requirements that are summarised in this section along with the limitations of traditional

compute systems and some emerging computational paradigms.

1.1 The Heterogeneous Compute Landscape

Electronics are used in many applications including: 1) high-performance, 2) high-efficiency/low-

power computing, and 3) autonomous sensing and computing [3]. High-performance com-

puting applications require more performance at constant power density and are usually

constrained by thermal management. Low-power computing, commonly required in mo-

bile applications, demand more performance and functionality at constant energy. These

are typically constrained by a limited power source (battery) and total cost. Autonomous

sensing and computing, under the wider umbrella of the internet of things (IoT), targets

reduced leakage and variability.

Different applications can have disparate computational requirements. While some

general purpose applications can benefit from single-threaded performance, other data-

intensive applications are amenable to specialization and parallelization. For example,
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Figure 1.1: Disparate computational requirements of different applications. This leads to
different energy efficiencies (performance/Watt) from general purpose to domain specific
architectures (DSA). [2]

most graph algorithms can be realized by some version of matrix-vector multiplication

[4] and neural networks are suited for hardware parallelization since their fundamental

computation is based on multiply-and-accumulate (MAC) operations [5]. Similarly, hard-

ware acceleration based on general purpose graphics processing units (GPGPUs) [6], field

programmable gated arrays (FPGAs) [7], and custom application specific integrated circuit

(ASIC) chips [8] are favourable for data intensive applications. This leads to a general

trend of difference in energy efficiency for different types of compute, which increases as

the hardware becomes more specialized, as shown in Figure 1.1 [1].

Some examples of high-performance compute hardware include: server central pro-

cessing units (CPUs) (Advanced Micro Devices, Inc. (AMD) EPYC [9], Intel Xeon [10]),

graphics processing units (GPUs) (NVIDIA RTX 4060 [11]), and GPGPUs (NVIDIA Tesla

[6], AMD Instinct [12]).

High-efficiency hardware represent both efficient architectures (e.g. systolic arrays for

matrix-vector multiplication in TPUs) and novel devices that help enable new architectures.

Some examples of high-efficiency/low-power computing include mobile system-on-a-chip

(SoC) (Apple A14, Qualcomm Snapdragon), ASIC accelerators (tensor processing units

(TPUs)), and processing-in-memory (Samsung PIM).
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Figure 1.2: Communication bottleneck between compute and memory blocks in Von-
Neumann-based architectures.

Figure 1.3: A DNN accelerator implemented using a Von-Neumann-based architecture.

1.1.1 Limitations of traditional compute systems

Traditional compute systems can be generally represented as a constitution of a compute

block and a memory block interconnected with a bus for transfer of data and control logic

(Figure 1.2). As an example of a system implemented using von Neumann-based arhitec-

ture, a deep neural network (DNN) accelerator is shown in Figure 1.3. Such traditional

architectures have been widely used across high-performance and high-efficiency compute

hardware for decades. However, in the wake of data-intensive computing such architec-

tures suffer from higher latency of communication between the memory hierarchy and

processing elements, high power consumption, and high hardware cost. To support the ris-

ing demand for emerging applications and larger models [13], such systems require higher

memory bandwidth to reduce latency and more efficient devices to improve energy-per-
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operation.

1.1.2 Emerging computation paradigms

Due to the challenges with traditional von Neumann-based devices, new paradigms for

compute, memory, and communication have emerged. Some examples include optical

computation, near-memory computation, and in-memory computation. Optical compu-

tation [14] involves devices that use the exchange of photons as the fundamental means

of representing information, and optical communication [15] uses light as the transport

medium for data and logic. Optical computation and communication can be implemented

using silicon photonics, and some real world examples of such devices include: optical

computation [16, 17], optical communication [18, 19].

Near-memory computation [20] refers to eliminating certain levels of conventional

memory hierarchy and bringing the data closer to computational cores or processing el-

ements. This can have benefits through reduced data movement due to data residing

closer to compute nodes thus saving latency and energy. Some examples of near-memory

computation-based hardware include [21, 22, 23, 24]. In-memory computation, also called

as compute-in-memory, refers to performing computation within memory using memory

arrays or bit-cells and their interconnections to perform operations. The following sub-

section provides an overview of the CIM paradigm, potential benefits and disadvantages of

CIM, and the various kinds of devices that can be used to implement CIM.

Compute-In-Memory

Energy consumption has been realized as the primary limiting factor in maintaining the

historical rate of performance improvements in traditional and emerging computational

applications [26]. Three key areas of focus where innovation is needed to continue im-

provements in energy efficiency are advances in: energy of compute operations (energy-

per-operation), energy required to store and access data in memory (energy-per-memory
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Figure 1.4: A DNN accelerator implemented using a Compute-In-Memory architecture.

bit), and energy required to communicate data externally (energy-per-communication bit)

[26]. In the last few years it has been observed that energy efficiency (performance-per-

watt) improvements have slowed across the heterogeneous computing landscape due to the

challenges of scaling energy required across the three areas.

To improve energy efficiency (energy-per-operation and energy-per-memory bit), domain-

specific architectures (such as Google’s TPU [8]) or ASICs are being widely used, and

could be customized for both cloud and edge applications [27]. The key bottleneck for

deep learning acceleration is frequent data movement between compute units and memory

units [5], that resembles the ’memory wall’ challenge in traditional von-Neumann architec-

tures. Domain specific architectures such as GPU and TPU do not solve the ’memory wall’

challenge as processing elements or compute cores are at a distance from on-chip global

buffers and off-chip main memory. vector-matrix multiplication (VMM) between the in-

put vector and weight matrix, which is essentially a MAC operation, is the most energy

intensive part of DNN processing. In light of this, CIM has been proposed as a promising

paradigm as it realizes computation physically within the memory sub-arrays [28].

State-of-the-art image recognition model parameters have grown exponentially (upto

100’s of MB [13]). CIM has been proposed as a potential paradigm for energy-efficient

compute by reduced data movement and increased parallelism in image recognition and

language translation computations. This can help with the reduction of energy-per-communication
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(a) (b)

Figure 1.5: (a) By storing weights in the memory array and leveraging parallel MAC op-
erations, CIM can achieve lower energy per operation through suppressed data movement
across memory layers compared to von Neumann-based computation [25]. (b) Key algo-
rithmic kernels can be executed directly in memory saving precious communication energy
[26].

bit to improve energy efficiency [26]. A representative system (a DNN accelerator) imple-

mented using CIM-based architecture is shown in Figure 1.4. By storing weights in the

memory array and leveraging parallel multiply and accumulate, CIM can achieve lower

latency and energy per operation through suppressed data movement across memory layers

compared to von Neumann-based computation Figure 1.5. Reduced intermediate data can

provide further reduction in latency.

Emerging NVM (eNVM) Devices for CIM

static random access memory (SRAM) technology has been used to implement CIM due

to multiple benefits in large on-chip capacity and availability at the latest technology node.

However, SRAM and dynamic random access memory (DRAM) have some drawbacks

such as volatility with significant leakage power or refresh power consumption, especially

in edge devices where dynamic power gating is desired. emerging nonvolatile memory

(eNVM), such as RRAM, phase change memory (PCM) etc. may become more compet-
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itive than SRAM/DRAM as CIM synaptic devices on power constrained platforms due to

their non-volatility (turn on-off without losing stored weights), higher bit density and low

leakage, enabling large embedded memory and high energy-efficiency. Since eNVM bit-

cells typically have a smaller layout area than SRAM bitcells and possibly offers multi-bit

per cell, they can yield a higher integration density at the same technology node. eNVM

devices of interest include RRAM [29], PCM [30], spin-orbit-torque magnetic random ac-

cess memory (SOT-MRAM) [31], spin-transfer-torque magnetic random access memory

(STT-MRAM) [32], ferroelectric field effect transistor (FeFET) [33] and electrochemical

random access memory (ECRAM) [34]. In this work, we study RRAMs as the device of

interest in system integration for their low-leakage and high bit-density features [35].

Some of the commercially available fabrication processes for eNVM include: Taiwan

Semiconductor Manufacturing Company Limited (TSMC) 40 nm RRAM (capacity: 256K

× 44) [36], TSMC 28 nm RRAM (capacity: 0.5 Mb) [37], TSMC 22 nm RRAM (density:

10.24 Mb/mm2) [38], Intel’s 22 nm RRAM (density: 10.1 Mb/mm2) [39], TSMC’s 40

nm PCM [40], STMicroelectronics’ 28 nm PCM (capacity: 16MB) [41], TSMC’s 22 nm

STT-MRAM (capacity: 32Mb) [42], Intel’s 22 nm STT-MRAM (density: 10.6 Mb/mm2,

capacity: 7 Mb) [43], Globalfoundries’ 22 nm STT-MRAM (density: 40 Mb/mm2) [44],

Samsung’s 28 nm STT-MRAM (density: 128 Mb/mm2, capacity: 8 Mb) [45], Global-

foundries’ FeFET at 28 nm (capacity: 64 kbit) [46] and 22 nm (capacity: 32 MBit/cell)

[47].

1.2 The Heterogeneous Integration Motivation

The varied demands of compute applications were traditionally met by monolithic fabrica-

tion of semiconductor devices, typically referred to as monolithic two dimensional (2-D)

integrated circuits (ICs). Some examples of monolithic ICs include: NVIDIA RTX 4060

GPU [11], Intel Haswell based Core i7 CPU [50] and AMD Ryzen 4000 CPU [51], Cere-

bras Wafer Scale Engine [52], Apple A16 bionic SoC [53], etc. As discussed previously,
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Figure 1.6: Non-linear trend for transistor density and energy per operation. [26]

Figure 1.7: Surging average design cost of next-gen nodes. [48]

historic innovation in monolithic IC performance was through architectural innovation,

process technology gains, larger die sizes, and higher power consumption. To address the

growing compute and memory demands of data-intensive computing, more on-chip func-

tionality needs to be added and this has lead to an unsustainable increase in die sizes [54].

However, non-linear trends in device densities and energy per operation (Figure 1.6 [26]),

and the rising design costs of advanced technology nodes (Figure 1.7 [48]) has made con-

ventional feature scaling, and thus working with large die sizes, an expensive pursuit [26].

Furthermore, not all parts of an SoC benefit from the leading-edge costly technology (Fig-

ure 1.8 [49]). There are additional challenges with monolithic integration from design and

device/material aspects. When a new technology node is introduced, existing intellectual
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Figure 1.8: Application-based disparate technology requirements. [49]

property (IP) needs time to mature to the design rules of the new node causing potential de-

lays in fabrication. Introducing new devices and materials to complementary metal oxide

semiconductor (CMOS) processes can also be a challenge from an economic and logis-

tical perspective. For instance, photonic devices require poly-Silicon while CMOS does

not uses poly-Si, and the leading edge photonic devices are fabricated at 45nm [55] while

leading-edge CMOS is at 5nm [56]. Similarly, integrating devices with new materials such

as PCM [30], RRAM [29], FeFETs [33] with mature 60-mask-layer CMOS processes [57]

could have challenges making them not easy to implement monolithically. A combination

of these reasons pushed the packaging technology to move toward modular designs.

Figure 1.9: CPU–memory BW trend per memory device as a driver for Heterogeneous
Integration. Memory BWs have continually increased over time to support the CPU per-
formance. [58]
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1.2.1 Opportunities for Heterogeneous Integration: A move towards modular designs

The International Roadmap for Devices and Systems (IRDS) 2020 “Package Integration”

white paper [59] describes “HI” or “dense off chip integration (DOCI)” as the “approach

and strategy of using advanced packaging (AP) consisting of scaling, higher feature densi-

ties of traditional package elements, materials and structures leading to tighter integration

and better performance to integrate at the package rather than single chip level, for systems

with conventional single-die like performance at lower cost.” Some potential benefits of

heterogeneous processes and integration include: multiple processes optimized for individ-

ual IPs, multi-chip integration by AP, and no reticle limit on the overall product. HI and

AP is driven by three factors: 1) Faster movement of big data, which translates to need for

high bandwidth (Fig. Figure 1.9), low latency, and low power interconnection, 2) need to

integrate IP on different nodes and fabrication processes, and 3) yield resiliency [60].

Some examples of heterogeneous integration in the literature include Xilinx’s “Everest”

[61], AMD’s chiplet-based “Rome” and “Matisse” SoCs [62], as well as Intel’s bridge-

based [63] and through-silicon via (TSV)-based 3-D [64] integration. A fundamental ob-

jective of most advanced integration schemes is to connect dis-aggregated chips to match

the functionality of monolithic SoCs.

Figure 1.10: Move to Heterogeneous Integration
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Benefits and Trade-offs of 3-D Heterogeneous Integration

The need for higher bandwidth and lower delay in chip-to-chip signal interconnections

has led to a technological push towards modular architectures such as TSV based three

dimensional (3-D) ICs [65]. Some of the benefits of TSV-based 3-D integration include

lower signaling energy-per-bit (EPB), lower link latency, and higher interconnect density

compared to other enhanced-2-D integration schemes such as interposers and bridge-based

integration. However, relative to monolithic 3-D ICs, conventional TSV-based 3-D integra-

tion is expected to have higher EPB, higher inter-chip link latency, and lower interconnect

density [66]. Owing to this performance gap (Figure 1.10), there is a significant interest in

monolithic 3-D fabrication. However, limitations in devices, materials, and temperatures

make monolithic 3-D integration challenging and limiting.

Monolithic 3-D ICs can have higher 3-D connectivity (with the use of nanoscale inter-

layer vias) but are limited in providing heterogeneity of devices at disparate technology

nodes. On the other hand, while conventional microbumps and TSV-based 3-D die stacking

facilitates integration of pre-fabricated dice of varying technology nodes, such integration

provides limited interconnect density relative to monolithic 3-D integration [67].

Need for HI in CIM

Among various heterogeneous integration (HI) architectures, such as multi-chip module

(MCM), 2.5-D, and 3-D, 3-D-HI can provide higher compute density and signaling EPB

through a reduced footprint and interconnection length, respectively, compared to MCM

and 2.5-D [68]. A growing need for higher logic-memory bandwidth and lower chip-to-

chip signal interconnection delay have led to a technological push towards 3-D-HI such

as through-silicon via (TSV)-based 3-D integrated circuits (ICs) [68, 69, 70]. Although

HI can enable dense memory-logic integration needed for state-of-the-art CIM hardware

accelerators, there are power delivery and thermal challenges with HI for CIM.
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Figure 1.11: BEOL capacitance and resistance change node to node [71]

1.2.2 Interconnection Challenges

BEOL impedance scaling challenges

According to the IRDS 2020 “More Moore” roadmap [3], interconnect resistance has en-

tered an exponential increase domain due to non-ideal scaling of barrier material for Cu,

leading to less conductor volume and increased scattering at the interconnect surface and

grain-boundary interfaces. Clocking frequency (fmax) at nominal supply voltage is fore-

casted to improve from 3.1 GHz in 2020 to 3.5 GHz in 2025, and 2.9 GHz in 2034. This

limited scaling is due to increasing parasitics, particularly interconnect resistance, and lim-

ited gate drive (Vgs − Vt) as a result of supply voltage scaling.

A recent study [71] has highlighted the impact of change in node to node back end of

line (BEOL) capacitance and resistance. RC scaling from node to node is driven by mul-

tiple factors including conventional dimensional scaling along with material and structural

changes. With a case study based on Intel’s Core i7 CPUs, according to the authors BEOL

R,C scaling from 14 nm to 10 nm suggests a 0.84× decrease in line-to-line C/µm, 2.83×

increase in R/µm, and 2.4× increase in RC delay/µm2 (Figure 1.11). Therefore, it is im-

portant to understand and better characterize the challenges that change in BEOL parasitics

pose to signaling performance of both conventional and non-von Neumann digital systems.

As 3-D integration is expected to be more widely adopted in the next decade as a form
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Figure 1.12: TSV capacitance and resistance change [75]

of HI [3], it is important to analyze different integration schemes for potential signaling

performance bottlenecks and non-starters to provide design guidelines for a viable de-

sign space. Compared to single die system-on-chips, TSV-based 3-D [65] enables diverse

heterogeneity in device integration from different technology nodes and improves overall

yield through splitting larger monolithic dice into multiple smaller dice [72]. Monolithic

3-D integration is enabled through fabrication of high-density fine-pitch inter layer vias

(ILVs), low-temperature active layer fabrication processes, and emerging nanotechnology

techniques [73]. ILVs can enable higher inter-layer connectivity compared to both conven-

tional 2-D and TSV-based 3-D and higher interconnect density than TSV-based 3-D [74,

67]. This implies lower EPB and link latency between devices in different active layers in

a monolithic IC compared to TSV-based 3-D ICs.

Furthermore, TSVs, which are used to enable heterogeneous integration of disparate

logic and memory units, have seen a steady scaling trend with reduction in pitch/diameter

and thus enabling interconnect density. However, this leads to worsening of TSV resistance,

which can be seen from Figure 1.12.

Power Delivery Challenges: Implications for Monolithic and HI

A factor that poses challenge in power delivery design for edge intelligent hardware is the

current trend of increasing power and power density in recent CIM and hardware accel-
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Figure 1.13: Power density trend of recent CIM hardware accelerators.

erators, as shown in Figure 4.1. Increasing DNN model sizes and workload complexity

can lead to larger die sizes due to a higher demand for on-chip resources such as mem-

ory arrays, analog-to-digital converters (ADCs), etc. When it comes to low-power edge

applications, the primary motivations are to improve energy efficiency (tera-operations-

per-sec-per-Watt or TOPS/W) and compute efficiency (tera-operations-per-sec-per-mm2 or

TOPS/mm2). This can be achieved through device scaling and reducing the overall hard-

ware form-factor. As a result, the area occupied by an edge intelligent hardware and voltage

regulators will need to shrink. A push for thinner devices usually corresponds to reduction

in height of the die and the power delivery components such as interconnects, capaci-

tors and inductors. Additionally, recent work has demonstrated performing vector-matrix-

multiplication in parallel on multiple CIM cores, which introduces certain non-idealities

such as core-to-core variation of IR-drop and supply voltage instability [76]. All these

trends introduce multiple unique challenges in designing a robust PDN for CIM.

A challenge in the realization of advanced 3-D heterogeneous integration is evaluat-

ing the potential impacts and benefits of the PDN. According to [77], for the same design

implemented in 2-D versus 2-stack 3-D, the 3-D design consumes potentially 50% of the

2-D area along with a similar power requirement. However, since the 3-D design has fewer

number of bumps, the current per bump is increased due to a smaller footprint. This trans-
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lates directly to increased power density and requires evaluation of PDN design parameters

for careful floorplanning to avoid power and thermal hotspots.

Emerging 3-D integration techniques such as die to wafer (D2W) and wafer to wafer

(W2W) are promising for “More than Moore” scaling and DOCI for advanced technology

nodes. For these integration techniques, an optimal PDN design for meeting design speci-

fications is non-trivial. This is because with 3-D integration there can be challenges such as

inter-tier power supply noise (PSN) coupling [78], trade-off between inter-tier power and

signal routing, and limited scaling of BEOL interconnect parasitics.

Related work from literature has explored some of the above highlighted challenges.

Yang et. al. [79] presented a PDN analysis framework for emerging 2-D enhanced (2.5-D)

and 3-D heterogeneous integration platforms and benchmarked interposer and bridge-chip-

based integration technologies from a PDN perspective. Their analysis of impact of bridge-

based integration suggested minimizing the overlap region between a bridge and a die, and

using multiple bridge-chips instead of a single large bridge-chip to mitigate PSN. They also

proposed using through-bridge vias (TSVs) to improve PSN. However, this analysis only

focused on PDN challenges and opportunities for 2.5-D integration. Kahng et. al. [80]

presented a a novel power delivery path-finding methodology for emerging D2W face-to-

face (F2F) integration. Their study shows “scale-independence” of IR drop behavior due

to regular power and ground TSVs for a D2W F2F 3-D-IC example.

Furthermore, in the wake of limited PPAC gains from conventional scaling, multiple

scaling boosters have been proposed for advanced nodes [3]. These include gate all around

(GAA)structures such as lateral nanosheets [81], sequential integration of vertical and lat-

eral GAA devices [82], backside power delivery network (BS-PDN)[83], etc. In [83], the

authors present a PDN modeling framework for BS-PDN configurations. They reported

greater than 4× reduction in PSN in the BS-PDN configurations relative to conventional

BEOL PDN. Thus, it is important to evaluate the potential benefit of such advanced power

delivery schemes for advanced HI techniques.
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(a) (b)

Figure 1.14: Scaling projection of (a) power density and (b) computation throughput of
CPU cores at the maximum clock frequency and at thermally-constrained average fre-
quency

1.2.3 Thermal Challenges

Stalled Power Densities and Increasing Package Power

An exponential increase in transistor density and limitations in supply voltage scaling and

interconnect parasitics, particularly interconnect resistance, have lead to a stall in micropro-

cessor powers (“power wall”), and thus, clock frequency. Additionally, in the post-Dennard

era, stalling of power densities due to limitations of conventional cooling techniques consti-

tuted a “thermal wall.” According to the 2020 IRDS [3], power density poses a significant

challenge for scaling, especially due to it’s expected 2.5× increase by 2031 due to 3-D

integration (Figure 1.14a). Furthermore, thermal constraints are expected to reduce the av-

erage CPU frequency to 0.8 GHz. This raises an opportunity for advanced cooling solutions

to maintain an overall computation throughput scaling of ×14 over six node generations

instead of ×3.8 with a thermally-constrained system (Figure 1.14b). The thermal design

power of server CPUs and GPUs have also been increasing by ≈ 7% per year over the last

decade Figure 1.15 [54].
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Figure 1.15: Increasing TDP of server CPUs and GPUs over the last decade. [54]

Thermal Implications for Monolithic and HI

Thermal challenges described previously impact both monolithic and HI systems. For

monolithic ICs, higher junction temperatures might lead to thermal throttling and other

reliability related challenges such as negative-bias temperature instability (NBTI) and elec-

tromigration. For modular designs, that constitute multiple dice assembled in close prox-

imity, in addition to the challenges with monolithic ICs, thermal coupling is an additional

challenge. This subsection covers the challenges in thermal coupling with a case study to

compare thermal coupling effects in representative HI systems.

Silicon interposer-based integration is capable of supporting higher interconnect den-

sities (0.5-1.0 µm line/space) than organic substrates (2-5 µm) along with less thermal

coupling and lower package power densities compared to 3-D integration [84]. However,

Si-interposers are potentially more expensive compared to organic substrates, highlighting

a tradeoff between cost and density. Moreover, interposer-based links can also have higher
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(a) Interposer-based 2.5-D integra-
tion

(b) 3-D integration

(c) Power Densities (d) normalized maximum
junction temperatures

Figure 1.16: (a) Interposer-based 2.5-D and (b) 3-D integration examples. (c) Interposer-
based 2.5-D and 3-D integration normalized maximum junction temperatures: Tier powers:
1. processor (150 W), 2. processor (150 W)

EPB and latency for die-to-die connections compared to 3-D integration.

Figure 1.16 (a,b) shows examples of 2.5-D and 3-D integration technologies. In the first

approach (Figure 4.2a), active dice are connected to an interposer using C4 or microbumps

for inter-die connectivity. Figure 4.2b shows a monolithic 3-D integration scheme where

inter-layer vias are used for inter-tier connectivity of active device layers. As shown in

Figure 1.16d, using conventional cooling techniques, 3-D integration of logic-on-logic tiers

leads to a worst case 73% higher maximum junction temperatures (Tj,max) compared to

an equivalent 2.5-D case, for a uniform per tier power of ≈150 W based on server thermal

design power (TDP) estimates [85]. This can be attributed to increased volumetric power in

3-D ICs, which can lead to higher inter-tier steady state temperatures and transient thermal

coupling. Moreover, this disparity in 3-D thermal performance is expected to only worsen

with additional tiers and with the presence of hot-spots. However, there are significant

electrical benefits from 3-D integration technologies including lower signaling EPB, lower

interconnect latency, and higher interconnect density compared to other 2.5-D integration
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schemes such as interposers and bridge-based integration [66, 84].

1.2.4 Device-System Integration Challenges

Application Performance as a Function of Physical Effects

Resistive Random Access Memory (or RRAM) [86] is an attractive form of emerging

non-volatile memory in hardware implementation of neural networks. Device defects in

RRAMs over time lead to temporal variation in bit-cell conductance, which contributes to

loss in neural network image recognition accuracy over time. Previous retention induced

conduction variation studice [87, 88] have not considered thermal effects on RRAM device

tiers due to neighboring tiers in a 3-D IC form factor. Moreover, there are no prior efforts

examining how 3-D integration approaches and choice of cooling architecture directly im-

pacts RRAM’s retention.

Thermal crosstalk and scaling potential under thermal effects in a 3-D RRAM crossbar

array were investigated in [88]. The authors suggest that thermal crosstalk in 3-D RRAM

arrays could deteriorate device retention performance and lead to data storage failure from

LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell (Fig-

ure 1.17). They provide and verify, via numerical simulations, potential methods to alle-

viate thermal crosstalk. In [89], the authors studied the temperature behavior of RRAMs

based on HfO2 dielectric. They showed, via simulations, that RRAM resistance increases

as temperature rises and at a certain temperature diffusion effects rise exponentially and

destroy the conductive filament (CF).

Thus, it is important to evaluate the impact of cooling architectures on binary and multi-

level RRAM devices in a 3-D IC form factor by quantifying image recognition accuracy

over time of BEOL RRAM hardware for applications such as CIM accelerators for image

recognition [90].

Power supply noise effects in 3-D-HI can bring additional challenges to computational

accuracy. These include steady-state PSN due to IR-drop on additional interconnects (re-
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(a) (b)

Figure 1.17: (a) A 3-D RRAM array and (b) corresponding thermal crosstalk [88]

sistive on-die PDN, TSVs, I/O bumps, etc) and inter-tier supply voltage variation. These

effects lead to variations in the analog outputs of the memory arrays and the reference volt-

ages in the ADCs contributing to sensing errors in the ADCs. These errors can significantly

impact CIM inference accuracy.

1.3 Research Objectives and Contribution

The objective of this research is to investigate power delivery network, thermal manage-

ment, and die-to-die signaling constraints in 3-D heterogeneous integration architectures

for compute-in-memory applications.

1. The design trade-offs of including a PDN and MIM capacitors in bridge-chip based

2.5-D heterogeneous platforms are investivated. While bridge-chip-based intercon-

nect platforms may potentially present PDN challenges, it is demonstrated that in-

cluding the PDN in the bridge-chip can be an effective technique to reduce both

DC-IR drop and Ldi/dt noise. Results from inclusion of a PDN and MIM capaci-

tors in the bridge-chip and the corresponding impact on DC-IR drop, Ldi/dt noise,

and high-frequency ripple are presented. The tradeoffs between bridge-chip sizing

and bridge-chip PDN configurations on the maximum transient supply noise are ex-

plored. We demonstrate that MIM capacitors in the bridge-chip PDN are an effective

technique to meet PSN design targets for 2.5-D architectures.
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2. To address the power delivery challenges in 3-D-HI described earlier in this chapter,

a systematic technology and design space exploration of power delivery for 3-D-HI

CIM systems is presented. A fast analysis flow facilitating early design-space ex-

ploration between power delivery design parameters and CIM performance metrics

is proposed. By co-optimizing 3-D PDN and SAR-ADC design parameters a bal-

anced 3-D CIM design is demonstrated compared to a 3-D naive implementation at

iso-power and iso-area. Trade-offs for such an approach are discussed.

3. A device-integration towards application-level reliability evaluation methodology is

proposed that can be used to quantify the direct impact of integration design param-

eters on CIM inference accuracy. Using this flow, heterogeneous 3-D logic-memory

CIM accelerator designs are benchmarked against monolithic 2-D and balanced inte-

gration design parameters for maximized 3-D CIM inference accuracy are reported.

The benchmark framework is released as an open-source tool for the research com-

munity.

4. A 3-D polylithic architecture is proposed that represents a densely integrated system

divided into multiple device tiers where custom chiplets, such as power management

IP, I/O drivers, and memory are embedded into the back-end of a base tier with

extreme efficient signaling and large bandwidth density. The thermal constraints

for polylithic 3-D are evaluated with aggressive cooling to investigate thermal limits

from transient- and steady-state perspectives.

5. Design optimization strategies for PDN in polylithic 3-D integration are presented.

The scope of this work is a detailed design space exploration of the power supply

noise effects in polylithic 3-D architectures. We propose three polylithic PDN de-

signs and benchmark their IR drop as a function of tier power, number of embedded

chiplets, hot-spot location, and TSV diameter and distribution to provide design lim-

itations and insights.

21



1.4 Organization of this Thesis

The chapters of this thesis are organized as follows:

1. Chapter 2 investigates design trade-offs in the PDN of bridge-chip based 2.5-D het-

erogeneous platforms. We demonstrate that including a PDN in the bridge-chip can

provide significant reduction in DC-IR drop, Ldi/dt noise, and high-frequency ripple

compared to the baseline.

2. Chapter 3 presents a device-integration methodology to facilitate early design-space

exploration. Trade-offs between power delivery design parameters and CIM perfor-

mance metrics are quantified.

3. Chapter 4 proposes a device-integration towards application methodology to quan-

tify the impact of integration architectures on RRAM reliability for CIM applications.

A comprehensive design-space exploration of PDN design for 3-D-HI CIM hardware

is presented.

4. Chapter 5 presents the thermal evaluation of a back-end-of-line-embedded chiplet

integration scheme (polylithic 3-D), where custom chiplets are embedded into the

BEOL of an application processor tier for CIM applications.

5. Chapter 6 presents a study to evaluate the power delivery constraints for polylithic

3-D integration of BEOL-embedded chiplets for CIM applications.

6. Chapter 7 discusses the potential impact of this research and potential future direc-

tions are summarized.
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CHAPTER 2

DESIGN CONSIDERATIONS FOR POWER DELIVERY NETWORK AND

METAL-INSULATOR-METAL CAPACITOR INTEGRATION IN BRIDGE-CHIPS

FOR 2.5-D HETEROGENEOUS INTEGRATION

The current trend of increasing power and power densities in recent CIM and hardware

accelerators, as shown in Figure 2.1 poses a challenge for efficient and low-cost power

delivery design for edge-intelligent hardware. Increasing DNN model sizes and workload

complexity can lead to larger die sizes due to a higher demand for on-chip resources such as

memory arrays, ADCs, etc. When it comes to high-performance applications, the primary

motivations are to increase overall system throughput (tera-operations-per-sec or TOPS)

and energy efficiency (TOPS/W). Higher system throughput can be achieved through either

higher operating frequency or added resources for parallel computing, both of which can

lead to increased system power dissipation. This can lead to thermal challenges in high-

performance hardware and particularly in CIM hardware that has a higher demand for on-

chip resources. As opposed to Si-interposers, that have limits on the maximum interposer

size for increasing on-package silicon, bridge-based 2.5-D HI is a promising approach to

scale on-package silicon. However, all these trends introduce multiple unique challenges

in designing a robust PDN for 2.5-D integrated CIM systems.

There can be additional challenges to CIM computational accuracy using bridge-based

2.5-D-HI. These include steady-state PSN due to IR-drop in areas of bridge and chip over-

lap and lack of power-sharing between dice through the bridge-chip. Increased PSN in

memory arrays can lead to variations in array analog outputs and reference voltages in

ADCs, leading to sensing errors in ADCs. These errors can significantly impact CIM in-

ference accuracy. To address these challenges, we present a systematic technology and

design space exploration of power delivery for 2.5-D-HI systems in this chapter.
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Figure 2.1: Power density trend of recent CIM hardware accelerators.

2.1 Introduction

The heterogeneous integration of chiplets fabricated using different process nodes is prov-

ing to be critical in continuing the performance and energy scaling of high-performance

computing systems while also addressing economic viability. Advanced integration tech-

nologies such as silicon interposer [91], localized bridge-chip interconnects, (2.5-D inte-

gration [92, 93, 94, 95]) and 3-D die stacking ([96, 97, 98]) enable extreme interconnect

densities. This has led to the rapid adoption of chiplet based architectures.

High-density interconnect routing on an organic package is challenging for several

technical limitations [99]. In contrast, silicon interposer technology offers much higher

interconnect density due to silicon-based processes. From a power delivery perspective, a

potential advantage of using Si interposers is the possibility of integrating deep-trench ca-

pacitors (DTCs) [100] or MIM capacitors [101] in the interposer for high-frequency noise

suppression. However, using Si-interposers presents some challenges as all the power from

the package is routed through the TSVs resulting in added resistance and inductance. In ad-

dition, the Si-interposer needs to be large enough to accommodate all needed dice mounted,

which can lead to yield and cost challenges.

To circumvent these issues, localized silicon bridges with just enough area to support
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Die #1 Die #2

Silicon bridge-chip

Package substrate

Figure 2.2: Localized silicon bridge-based 2.5-D heterogeneous integration.

die-to-die signaling interconnects can be located near die peripheries of adjacent chiplets.

However, power delivery remains a challenge as the bridge-chip overlap may limit access

of die peripherals to the package PDN [99]. Moreover, the number of on-chip power rails

continues to scale up with the core count, which leads to a steady increase in the thermal

design power [99, 102].

We investigate the design trade-offs of including a PDN and metal-insulator-metal

(MIM) capacitors in bridge-chip based 2.5-D heterogeneous platforms. While bridge-chip-

based interconnect platforms may potentially present PDN challenges, we demonstrate that

including the PDN in the bridge-chip can be an effective technique to reduce both DC-IR-

drop and Ldi/dt noise. We consider three scenarios: (a) inclusion of ground network in the

bridge-chip, (b) inclusion of power and ground network in the bridge-chip, and (c) inclu-

sion of metal-insulator-metal (MIM) decoupling capacitors in the bridge-chip. We model

a bridge-chip based two-die PDN with die #1 emulating a high-power CPU and die #2 as

an FPGA. We implement a distributed package-level PDN model to reflect the spreading

effects of current in the package and the coupling between different P/G bumps. The key

contributions of this work are:

1. We demonstrate that including the PDN in the bridge-chip can reduce DC-IR-drop

by up to ∼23%, lower Ldi/dt noise by up to ∼19%, and reduce the high-frequency

ripple by >3× compared to our baseline configuration.

2. We explore the tradeoffs between bridge-chip sizing and bridge-chip PDN configura-

tions on the maximum transient supply noise. We demonstrate that MIM capacitors
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Figure 2.3: PDN schematic diagram (a) excluding bridge-chip PDN and (b) including
bridge-chip PDN (c) showing the package P/G planes form a parallel resistance with the
bridge-chip PDN for the on-die peripheral circuits [103].

in the bridge-chip PDN are an effective technique to meet PSN design targets for

2.5-D architectures.

2.2 Design tradeoff methodology and PDN Specifications with bridge-chip PDN

For bridge-based interconnect technologies such as embedded multi-die interconnect bridge

(EMIB) [92], elevated fanout bridge (EFB) [93], direct bonded heterogeneous integration

(DBHi) [95], and heterogeneous integration stitching technology (HIST) [94] the introduc-

tion of the Si-bridge may prevent the area of the die that overlaps the bridge-chip from
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Figure 2.4: MATLAB-based PDN modeling methodology including bridge-chip PDN
models with MIM capacitors.
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Figure 2.5: (a) Ground net in the bridge-chip, (b) power and ground nets in the bridge-chip,
and (c) metal-insulator-metal capacitors in the bridge-chip [103].

having a direct power delivery path from the package [99]. Moreover, a break in the pack-

age PDN can be created in some of these technologies as a cut in the package surface is

needed to make room for the bridge [95]. In other bridge-chip based package technologies

the bridge-chip is mounted on the package surface, which limits direct access to the pack-

age PDN for the on-chip peripheral circuits [93, 94]. We aim to analyze a complete picture

of various 2.5-D bridge-based integration. Therefore, our assumption is for the worst case,

i.e., the on-die peripheral circuits do not have direct access to the package PDN in the

bridge-chip and die overlap region.

Schematics for two bridge-chip power delivery scenarios considered in this work are
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Table 2.1: Parameters of the PDN model [104]

Parameter Value
On-die metal resistivity (Ω ·m) 1.8e-8

On-die global wire Pitch/Wdith/Thickness (µm) 39.5/17.5/7
On-die intermediate wire P/W/T (nm) 560/280/506

On-die local wire P/W/T (nm) 160/80/144
on-die decap density (nF/mm2)

microbump pitch/R/L (µm/mΩ/pH)
335

40/30.9/11.1
C4 bump pitch/R/L (µm/mΩ/pH) 200/14.3/11.0

Package effective decap R/L/C (mΩ/pH/µF) 541.5/220.7/52
Package resistivity/inductance (mΩ/mm/pH/mm) 1.2/24

BGA pitch/R/L (µm/mΩ/pH) 500/38/46
TSV R/L (mΩ/pH) 54.2/77.78
PCB R/L (µΩ/pH) 166/21

PCB Decap R/L/C (µΩ/nH/µF) 166/19.54/240
Bridge-chip sizing (width (mm) × length (mm)) w = [1.5, 2.5, 4.5]

× l = 6
MIM capacitor density (nF/mm2) 0, 5, 10, 25

shown in Figure 2.3a and Figure 2.3b. Prior work [105] considered the case described in

Figure 2.3a, where the peripheral circuits on the die can not directly access the package

PDN. A two die system is considered where die#1 represents a FPGA (total peak power of

44.8 W), and die#2 represents a processor die (total peak power of 74.49 W), respectively.

These assumptions are hypothetical powers based on the power profiles of a 22 nm CPU

die [105] and a 14 nm FPGA die [7]. The current density maps of each die and the chip-

package-board PDN parameters for our model were assumed from [104]. The resistance

per unit wire length for the package PDN is assumed to be 1.2 mΩ/mm [104]. The product

of the number of metal layers (here two), the package size (a proxy for wire length assumed

as x and y dimensions), and the square of resistance per unit length is used to estimate the

total package DC resistance (DCR). This results in a package PDN DCR of ∼0.635 mΩ,

which is in close proximity of average package PDN resistance from the literature [106].

Resistance of the bridge-chip is assumed to be 20× that of the package (i.e. approximately

12.7mΩ) [103]. The metal thickness for the bridge-chip is assumed to be the same as the

on-die values since we model a Si-bridge, as summarized in Table 2.1 [104]. Package
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mounted decoupling capacitors (decaps) are assumed to be integrated on the top side (die

side) of the package with a uniform distribution outside of the die area.

In this work, microbumps are assumed to be a part of the PDN and the on-die PDN is

connected to the bridge-chip PDN through a few microbumps. Next, the peripheral circuits

of separate dice are assumed to share a single voltage domain. The bridge-chip metal-stack

is assumed to be multi-layered to accommodate both a PDN and a signaling network. The

following three cases are investigated:

• Ground (VSS) network included in bridge-chip: Availability of a common voltage

domain between adjacent dice may not always be feasible. It is more common to have

a shared ground between multiple voltage domains and adjacent dice (Figure 2.5a).

• Both power (VDD) and ground (VSS) network included in the bridge-chip (Fig-

ure 2.5b).

• MIM decoupling capacitors included in bridge-chip: If power and ground networks

are included in the bridge-chip, MIM decoupling capacitors could be fabricated be-

tween adjacent power-ground metal layers (Figure 2.5c).

2.3 Bridge-Chip PDN Analysis for 2.5-D CPU-FPGA Integration

2.3.1 Including power and ground network in the bridge-chip

An increase in a microprocessor’s load current can cause the on-die voltage to reduce tem-

porarily (and vice versa) due to a fairly slow response time of the platform-level voltage

regulation control loop (order of microseconds) [99]. These voltage fluctuations seen by the

die due to voltage regulator (VR) latency can impact the system performance and latency.

Thus, the total effective DC resistance (DCR) of the PDN, starting from the voltage regula-

tor output to the on-die switching load, is an important metric to improve system efficiency

and performance. Steady-state supply noise (IR-drop) due to the DCR can have implica-

tions for both analog and digital circuit performance. Lower supply voltage resulting from
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Figure 2.6: Transient analysis results for a 1 GHz pulse on-die excitation for (a) CPU
die excluding bridge-chip PDN, (b) CPU die including bridge-chip PDN, (c) FPGA die
excluding bridge-chip PDN, and (d) FPGA die including bridge-chip PDN [103].
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Figure 2.7: Transient analysis results including metal-insulator-metal capacitors in the
bridge-chip for (a) CPU die and (b) FPGA die [103].

higher IR-drop can make transistors slower [107] which, in turn, can cause timing failures

or even functional failures in critical paths. A higher IR-drop leads to a lower switching

voltage in digital circuits, potentially leading to incorrect logic output levels. Moreover,

power supply noise (PSN) can also introduce clock jitter in the system [108]. These effects

can be potentially exacerbated with bridge-based package architectures due to the inacces-

sibility of on-die peripheral devices to the package PDN. For these reasons, it is critical to

investigate techniques to manage the absolute IR-drop in multi-die 2.5-D packages.

For steady-state supply noise (IR-drop) analysis, we observe that without a PDN in the

bridge-chip, the IR-drop in the FPGA and the CPU dice are 86 mV and 99 mV, respectively

[103]. Including the ground network in the bridge-chip leads to a 10% and 8% IR-drop

reduction for the FPGA die and the CPU, respectively. Including both the power and ground

networks in the bridge-chip can further enhance this reduction. The IR-drop improves by

23% for the FPGA die and 17% for the CPU die, compared to the case without PDN in

bridge-chip. The bridge-chip PDN appears as a parallel resistive network to the PDN for

the on-die peripheral circuits, which lowers the IR-drop for each die.
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Figure 2.8: Schematic for the different configurations considered of a bridge-chip PDN
with varying bridge-chip width along the x-axis as shown.
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Figure 2.9: Maximum transient noise for (a) CPU and (b) FPGA as a function of bridge-
chip width for different bridge-chip PDN configurations. (Nbridge = number of bridge-chips
in package)
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Transient-state analyses were performed for Ldi
dt

-based supply noise estimation for the

considered configurations. A 1 GHz on-die stimulus was used for this analysis [103]. All

nodes on-die are assumed to be switching simultaneously without any decoupling capacitor

in the bridge, as a representative worst-case scenario. The results are shown in Figure 2.6.

The first droop is a consequence of the resonance caused by the interaction between the

on-die capacitance and the total package loop inductance. Including the bridge-chip PDN

(without MIM capacitors) does not impact the loop inductance and the on-die capacitance

since the bridge-chip PDN is in parallel to the on-die PDN. Thus, the impact on tran-

sient (first droop) noise after inclusion of both power and ground network (Figure 2.5b)

in bridge-chip is marginal (5% for FPGA and 9% for CPU) compared to the case without

power and ground included in the bridge-chip. This impact on the first droop noise was

less significant compared to that observed in the steady-state IR-drop study since on-die

resistance is impacted more significantly than loop inductance with the bridge-chip PDN

inclusion. Additionally, the resistance of the on-die network and of other components in the

loop dampens the voltage droop and any subsequent ringing. Since including the bridge-

chip PDN reduces the effective resistance of the on-die PDN (as described previously), an

increase in the high-frequency ripple (shown in red in Figure 2.6) is observed across the

noise profile (19% for CPU and ∼6% for FPGA).

2.3.2 Decoupling (MIM) capacitors in the bridge-chip and impact of bridge-chip sizing

The first droop noise can be reduced by adding more on-die decoupling capacitors. How-

ever, area constraints can limit the amount of decoupling capacitance available on-die.

MIM decoupling capacitors could potentially be fabricated between the power and ground

metal layers in the bridge-chip, if a PDN is included in the bridge-chip (Figure 2.5c). For

first droop noise and high-frequency ripple analysis, a modest decoupling capacitor density

of 5 nF/mm2 is assumed in the bridge-chip, with results shown in Figure 2.7. The tran-

sient (first droop) noise is reduced by 19% for the FPGA and 12% for the CPU compared to
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the case without power and ground included in the bridge-chip. An improvement of 11.4%

and a 7.6% for the FPGA and CPU die, respectively, is observed compared to the case of no

MIM capacitors in the bridge-chip PDN. Additionally, the high-frequency ripple for both

dice is 3× lower compared to the other cases presented in Figure 2.6.

The limited access to package PDN for die peripherals in the overlap region between

bridge-chip and dice can lead to significant supply noise challenges. We explore the impact

of bridge-chip sizing and bridge-chip PDN configuration on the maximum transient supply

noise. In this study, we vary the bridge-chip width (i.e., along x-axis) from 1.5 mm to

4.5 mm while keeping a fixed length (y-axis) of 6 mm [104], as shown in Figure 2.8b,

Figure 2.8c and Figure 2.8d. Essentially, we are changing the bridge-die overlap length,

as shown in Figure 2.8b. Multiple configurations were assumed for bridge-chip PDN,

including no PDN in bridge-chip, PDN in bridge-chip with no MIM caps, and PDN in

bridge-chip with MIM caps. The baseline case for this study is a two-die package assembly

that does not contain a bridge-chip in the package (i.e. Nbridge = 0) but, instead, includes

microbumps across the package area to connect the dice to the package PDN (Figure 2.8a).

The results are summarized in Figure 2.9a and Figure 2.9b, which show the results for the

CPU and FPGA dice, respectively.

As seen in Figure 2.9a, the addition of a bridge-chip without bridge-chip PDN (square

curve) leads to an increase in transient noise compared to the baseline (dashed line). The

noise increases from ∼146 mV (baseline) to ∼149 mV at a bridge-chip width of 1.5mm

because the access to package PDN is blocked by the bridge-chip (Figure 2.8b). As there

is no bridge-chip PDN in this case, increasing the bridge-chip size (and thus the bridge-die

overlap) leads to an increase in maximum noise due to a reduction in the number of bumps

that offer direct package PDN access. Next, when a PDN is included in the bridge-chip

without any MIM capacitors (circle curve), there is a marginal reduction in noise at 1.5

mm bridge-chip width compared to the ‘no bridge-chip PDN’ case. This noise reduces fur-

ther with increasing bridge-chip width (Figure 2.8c and Figure 2.8d) because more power
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and ground bumps are introduced for power delivery with a wider bridge leading to lower

current per bump, and thus lower worst case noise. The next three configurations involve

adding MIM capacitors to the bridge-chip PDN with densities of 5, 10 and 25 nF/mm2 [109]

distributed uniformly across the bridge-chip PDN. With a fixed MIM decoupling capaci-

tor density across the bridge-chip PDN, increasing the bridge-chip size leads to a higher

overall decap, which can reduce high-frequency noise. However, increasing bridge-chip

size also leads to fewer direct access bumps between die and package PDN, thus there is

a trade-off between bridge-chip size and MIM capacitor density, which is evaluated here.

With a decap density of 5 nF/mm2 (upwards triangle curve), it is observed that the reduction

in noise with increasing bridge-chip width is not significant. However, increasing the MIM

capacitor density to 10 nF/mm2 and above, a greater reduction in noise is observed (down-

wards triangle curve) and the trend changes to lower noise with larger bridge-die overlap

compared to previous curves. An MIM density of 10 nF/mm2 and a bridge-chip width of

4.5 mm achieves a similar noise as that with 25 nF/mm2 and 2.5 mm bridge-chip width

(Figure 2.9a). For this case study, an MIM capacitor of 10 nF/mm2 or greater can offer a

significant reduction in maximum transient noise compared to ‘no bridge-chip PDN’ case.

This noise can be reduced from ∼19% of VDD to ∼13.5% of VDD for the CPU (∼15%

of VDD to ∼9.1% of VDD for FPGA) by including a PDN in the bridge-chip with a MIM

decoupling capacitor density of 10 nF/mm2 and a bridge-chip width of 4.5 mm.

2.4 Related Work and Discussion

Interconnect platforms such as interposers and bridges are typically used to provide high-

density, low-latency communication between two dies, such as a GPU and high-bandwidth

memory (HBM). Including PDN along with signals in the bridge could create contention in

the re-distribution layers (RDL) between power and signals. A potential way to get around

this could be to increase the number of RDLs (EMIB uses four RDLs) to a higher value.

This could incur additional complexity in fabrication of the bridge-chip and added cost.
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For reference, deep trench capacitors (DTC) were integrated in a silicon interposer in

[100] to improve the PSN of an HBM2E PHY by 62% using a DTC density of 300 nF/mm2.

In [101] the authors integrate MIM capacitors in a silicon interposer with a density of 17

nF/mm2. Another work [110] has explored using wafer-on-wafer 3D stacking to closely

couple DTC to an AI processor for 40% higher operating frequency and 16% less energy

compared to its previous generation. In [111], a substrate-embedded bridge-chip was used

with only ground nets that appear in parallel to the package surface metal layer, and not

directly to the on-die PDN as was assumed in our work. It was shown in [111] that the

loop inductance after including a bridge-chip was up to three times lower than without

including the bridge-chip. All of the above mentioned techniques can potentially help in

managing the transient first droop. A summary of some of the related work is presented in

Figure 2.10.

37



Attribute Chen et al., 2020 [100] Liao et al., 2014 [101] Mahajan et al., 2019 [111] This work

Schematic

Interconnection method
Si-Interposer: μ-bump + 

TSVs

Si-Interposer: μ-bump + 

TSVs
Localized Si-bridge Localized bridge

PDN in bridge/interposer TSV and RDL in Interposer TSV and RDL in Interposer Only Ground Nets in bridge 2-layer P/G Network in bridge

Decoupling Capacitor in 

bridge/interposer/on-die

Deep Trench (Interposer), 

MiM (On-die)
High-K MiM (interposer) No MiM (bridge)

Decap. Density 300 nF/mm2 (DTC) 17 nF/mm2 N/A Up to 25 nF/mm2

PDN Performance
72% lower 1st droop with 

DTC
Not demonstrated

3 ⨉ lower loop inductance 

with G in bridge

23% lower IR-drop, 19% lower 1st 

droop, > 3⨉ lower HF ripple 

Measurement/

Simulation
Simulation Measurement Measurement Simulation

Figure 2.10: A summary of the salient features of related work in literature.
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2.5 Conclusion

We demonstrate that including a PDN in the bridge-chip can provide significant reduction

in DC-IR-drop, Ldi/dt noise, and high-frequency ripple compared to the baseline case of

no PDN in the bridge-chip. Key takeaways are that 2.5-D designs with both smaller-width

and larger-width bridge-chips can benefit from decoupling capacitors placed closer to the

on-die PDN and that there is a trade-off between the bridge-chip size and MIM capacitor

density. We quantify the impact of bridge-chip size and decoupling capacitor density in

the bridge-chip on the maximum transient noise. Through a bridge-chip PDN design space

exploration, insights are provided which can be useful for 2.5-D design convergence.
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CHAPTER 3

CO-OPTIMIZATION FOR ROBUST POWER DELIVERY NETWORK DESIGN

IN 3D-HETEROGENEOUS INTEGRATION FOR COMPUTE IN-MEMORY

3.1 Introduction

To address the power delivery challenges described in Chapter 1 of this thesis, we present

a systematic technology and design space exploration of power delivery for 3D-HI CIM

systems. The key contributions of this chapter include:

• A fast analysis flow facilitating early design-space exploration between power deliv-

ery design parameters and CIM performance metrics.

• By co-optimizing 3D PDN and successive-approximation-register (SAR) analog-to-

digital converter (ADC) design parameters, we present a balanced 3D CIM design

that achieves ≈ 2× inference accuracy compared to an unoptimized 3D implemen-

tation at iso-power and iso-area. Trade-offs for such an approach are discussed.

Table 3.1: Power-performance trade-offs between H3D and 2D for CIM

Metric 2D-LL 3D-LL 3D-PP
Area (mm2) 115.1 3.7 56.2

Throughput (TOPS) 1.4 1.9 1226.5
TOPS/W 7.9 12.9 12.2

TOPS/mm2 0.01 0.5 21.8
W/mm2 0.0015 0.04 1.8
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Figure 3.1: Power density trend of recent CIM hardware accelerators.

3.2 3D vs 2D trade-offs for CIM

3.2.1 3D-HI CIM Integration

To compare performance and area trade-offs between 2D and 3D for CIM, a TSV-based

3D-integrated model of an analog CIM accelerator was evaluated and the 3D design of

CIM accelerators (7nm logic and 22nm RRAM memory) was applied to a VGG-8 model

[13] that was trained to use 8-bit inputs and weights [112] for inference on CIFAR-10

dataset. From an architectural standpoint, two options were considered [113]:

1. A layer-by-layer (LL) system: One logic tier on the package substrate and multiple

memory tiers stacked on top (as a memory cube). This design consumes low power

but yields high compute latency (Figure 3.2b), and

2. A pipelined (PP) system: 3D interleaved logic and memory tiers (Figure 3.2c). This

design offers high speed but consumes high power.

Figure 3.2 shows the baseline 2D (Figure 3.2a), 3D-LL (Figure 3.2b) and 3D-PP (Fig-

ure 3.2c) architecture configurations, with logic in blue and memory in green colours. A

comparison of 2D baseline, 3D-LL and 3D-PP designs, with this model using 1µm di-

ameter TSVs, is shown in Table 3.1. The performance projection is conducted with 3D
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Figure 3.2: Considered (a) 2D, (b) 3D-layer by layer (3D-LL) and (c) 3D-pipelined (3D-
PP) CIM architecture configurations.

NeuroSim simulator that is capable of modeling the 3D stacked CIM accelerators [113].

For 3D, memory blocks (RRAM sub-arrays and switch matrices) are assumed at 22 nm (ac-

cording to the availability from industry, e.g., TSMC and Intel’s latest RRAM processes)

and logic (ADCs and peripherals) is assumed at 7nm to leverage the scaling benefits. For

2D, we scaled logic area from 7nm back to 22nm to consider both logic and memory at

22nm (≈8× area inverse scaling). An LL architecture was assumed for the 2D design (2D-

LL), as a PP design would require a large number of on-chip memory sub-arrays (for weight

duplication), peripheral circuits, and buffers (to serve different DNN layers independently),

which leads to a prohibitively large 2D-PP area. The total number of operations (total com-

putations needed architecturally to complete an inference workload) were assumed to be

the same for all 2D and 3D designs. The energy efficiency (TOPS/W) is observed to be

63% higher with a 3D-LL implementation vs 2D-LL. The operation-density (TOPS/mm2)

is 50× and >2000× higher with 3D-LL and 3D-PP, respectively, vs 2D-LL. However, with

similar TOPS and lower area this leads to a higher power and power density in both 3D-LL
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Figure 3.3: (a) Cross-section view of the power delivery network of a 2-tier 3D stack. (b)
IR-drop differences between baseline 2D and 2-tier TSV-based 3D design.

and 3D-PP compared to 2D-LL.

The CIM weights need to be duplicated in a 3D-PP design to synchronize timing be-

tween different sized convolutional layers, which corresponds to more buffers and ADCs

for a PP design. Due to this, the 3D-PP design has a larger total power and logic area than

3D-LL. Due to these additional resources, the 3D-PP design also requires larger on-chip

interconnect length than 3D-LL leading to added energy and latency. 3D-PP also expe-

riences higher leakage than 3D-LL due to higher power dissipation. For these reasons,

3D-PP has a marginally lower energy efficiency (TOPS/W) than 3D-LL. Nevertheless, as

summarized in Table 4.1, both 3D designs offer higher throughput (TOPS), performance-

per-Watt (TOPS/W), and operation density (TOPS/mm2), and lower footprint, compared to

the 2D baseline. Next we look at the power delivery challenges specific to 3D-HI compared

to 2D baseline.

3.2.2 Power Delivery Challenges in 3D-HI

While the power delivery challenges mentioned in Section 1 exist for both monolithic 2D

and multi-die systems, they are exacerbated in 3D ICs. Figure 3.3 presents the comparison
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Figure 3.4: 3D CIM PSN evaluation and co-design methodology from device/integration
towards application-level. (Note: ∆VDD = Variation in supply voltage (mV); ADCOUT =
digital ADC output; Vref = ADC reference voltage (V).

of IR-drop as a percentage of supply voltage for both 2D and 3D ICs. Both designs were

implemented using 22nm logic (CMOS) and 22nm memory (RRAM) with the PDN mod-

eling methodology described in section 3.1. The total power for both 2D and 3D was 218W

(214.2W-logic, 3.8W-memory) and the only difference between the two designs is that the

3D case is a memory-on-logic face-to-back configuration that uses 1 µm diameter TSVs

and 200 µm pitch microbumps for power delivery to top tier (memory) (Figure 5.3a). The

maximum IR-drop in the memory tier in 3D was >2.5× compared to 2D (37% vs 13%)

(Figure 5.3b). This maximum IR-drop is seen in the corner regions of the memory die and

is mainly due to the additional resistive on-die PDN of the memory die. Noise for the logic

tier is similar in 2D and 3D since logic is assumed to be on the bottom tier in 3D and its

PSN is not affected significantly by the low-power memory tier on top. The scope of this

work is to co-design PDN and ADC design parameters to reduce ADC errors and optimize

CIM inference accuracy, and is reported in the following sections.

3.3 3D CIM PSN Evaluation Methodology from Device/Integration towards Application-

level

Figure 4.3 illustrates the proposed methodology to quantify the impact of 3D-HI PDN

design parameters on ADC output errors and to co-design PDN and ADC parameters to

maximize CIM inference accuracy. This flow combines a finite-difference method-based

PSN analysis framework with a CIM inference accuracy estimation framework and the
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details of each flow component are described as follows:

3.3.1 3D PDN modeling methodology

Figure 5.3a shows the PDN structure of an n-tier 3D stack with a cross-section in Fig-

ure 5.3b. We implement a distributed package-level PDN model, unlike previous works

that assume a lumped package model, to reflect the spreading effects of current in the pack-

age and the coupling between different P/G bumps, especially when dice share package

PDN planes. Figure 3.5c presents the flow for both steady-state and transient analyses

and this is an updated version of the flow presented in [114]. The flow begins with the

generation of the RLC network models of the board, package, and the on-die PDNs. These

models are subsequently combined to solve for nodal voltages and branch currents. The key

contributions in this updated flow include: a) support for modeling of 3-D packaging archi-

tectures, and b) support for interface with open source tools such as DNN+NeuroSimV1.xx

(a pre-RTL simulator [90]).

An ideal voltage regulator module (VRM) is assumed for board-level PDN and a lumped

R/L network is used to model board-level current spreading. The equivalent series resis-

tance and equivalent series inductance of board-level decoupling capacitors are included in

the model. The package power/ground planes are modeled as two layers with the bottom

layer connected to the motherboard by ball grid arrays and the top layer connected to an

on-die PDN through C4 bumps. Each node in the two layers is connected to six adjacent

nodes through an R-L pair, representing either package traces or inter-layer vias. Die-side

decaps are assumed to be connected to the top package PDN layer.

The on-die PDN consists of several metal layers where the P/G wires are parallel to

each other within a layer, and adjacent layers are orthogonal to each other. To better reflect

the interleaved nature of the on-die PDN and capture the effect of on-die vias, the on-

die PDN is modeled as a two-layer structure. The metal wires on each on-die PDN are

typically uniformly distributed, but if the actual layout is non-uniform, our flow calculates
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Figure 3.6: Cross-section of the considered integration architectures for PDN evaluation.
(a) Monolithic 2D (baseline). TSV and microbumps based 2-tier 3D with (b) localized and
(c) areal TSV distribution.

the effective wire pitch and via density to reorganize the PDN layout. For each on-die

layer, we map fine-granularity PDN layout to coarse mesh grids at a C4 bump granularity.

The equivalent parallel resistance is calculated, for each coarse grid containing multiple

vias and metal wires, and assigned using models described in [115]. All coarse PDN layers

with x-axis and y-axis metal wires are mapped onto the top and bottom layers, respectively.

Rvia are the effective resistances of vias between adjacent metal layers, and RTSV is the

resistance of TSVs between multiple 3D dice. Although this framework can be used to

model both steady-state and transient PSN, in this work we focus on steady-state analysis.

3.3.2 Inference Accuracy Estimation

To estimate the impact of steady-state PSN on inference accuracy, we simulated the infer-

ence operation of VGG-8 for each 3D-HI design and the 2D baseline. Simulations were

performed in Pytorch [117] where weights of VGG-8 were mapped to a grid of mem-

ory blocks containing the RRAM devices and necessary peripheral circuits following the

method outlined in [90]. 8-bit weights are represented by a group of 8 RRAM cells, where

a ”1” is represented by the low-resistance state (LRS) and a ”0” is represented by the high-

resistance state (HRS). Inputs are binarized and applied to the gates of the access transistors
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Table 3.2: Experimental Setup

PDN Model parameters
Parameter Value

On-die metal resistivity (ohm-m) 1.8e-8
On-die global wire Pitch/Width/Thickness (um) 39.5/17.5/7

On-die intermediate wire P/W/T (nm) 560/280/506
On-die local wire P/W/T (nm) 160/80/144

On-die decap density (nF/mm2) 335
microbumps pitch/R/L (um/m-ohm/pH) 40/30.9/11.1

C4 bump pitch/R/L (um/m-ohm/pH) 200/14.3/11
Package effective decap R/L/C (m-ohm/pH/uF) 541.5/220.7/52

Package resistivity/inductance
(m-ohm/mm/ pH/mm) 1.2/24

BGA pitch/R/L (um/m-ohm/pH) 500/38/46
TSV R/L (m-ohm/pH) 54.2/77.78
PCB R/L (u-phm/pH) 166/21

PCB decap R/L/C (u-phm/nH/uF) 166/19.54/240
Power (W) 218.01 (2D)

(Logic: 214.25, Mem: 3.76)
118.61 (3D)

(Logic: 114.85, Mem: 3.76)
Device and Circuit parameters

RRAM model [116]
bits/cell 1

On/off ratio 20.7kΩ/100kΩ
RRAM array size 128x128

Total number of arrays 23,048
Total chip memory capacity 45MB

TOPS/W 8
Supply voltage to both tiers 0.9V

SAR-ADC precision 4b
Neural network VGG-8
Precision I/W 8b/8b
Network size 12.7MB

Convolutional/dense layers 6/2
Duplication amount (layer 1 - layer 8) 64/64/16/16/4/4/1/1
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in each row, connecting the RRAM to the grounded select line (SL). Resulting voltages on

the bitline (BL) are calculated by the voltage division between the pull-up PMOS and the

equivalent resistance of the RRAMs connected in parallel. Calculated BL voltages are then

used in the simulation of the analog-to-digital (ADC) conversion in the logic tier. See Fig-

ure 3.7 for a visual depiction of a memory block and its corresponding logic block. Digital

ADC outputs are then shifted and added to construct the final output of each layer. Outputs

from each layer are then sent as inputs to following layers allowing for a holistic simulation

of the inference operation on a CIM system.

In the RRAM model used in these simulations [116], the on-state resistance is 20.7

kΩ and the off-state resistance is 100 kΩ, resulting in an on/off ratio of 4.83. In order

to achieve accuracy comparable to the software baseline (≈90%) without considering IR-

drop, the operation of each RRAM array was limited to 3 rows at a time. This comes at a

trade-off in operating latency, but it allows the effect of IR-drop to be isolated from other

device non-idealities such as the limited on/off ratio. To give an estimate for how a larger

scale chip will be impacted by PSN, we duplicated shallow layers of VGG-8 (see Table 3.2).

This also increases the throughput of the chip and reduces the latency of inference. After

duplication, the total model size is 45 MB. Other relevant parameters are listed in Table 3.2.

Once baseline accuracy was achieved, a contour plot of IR-drop was generated for each

3D-HI design following the PDN analysis framework (see Figure 3.9). The IR-drop is then

used in inference accuracy simulations. Because the value of IR-drop to a compute block

depends on its physical location on the chip, we injected IR-drop values to each compute

block in the inference simulation according to their mapped location on the die. This way

the generation of errors due to spatial IR-drop can be simulated.

3.3.3 Experimental Setup

The details of PDN model and device/circuit parameters are summarized in Table 3.2. Ar-

chitecturally, a baseline 2D monolithic design is partitioned and arranged into a 2-tier
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Figure 3.7: Operation of an RRAM array and corresponding ADCs in the 3D-HI design.
Analog outputs were calculated in the presence of PSN, the ADC sensing process was
simulated, and errors in ADC outputs were evaluated.

3D PP configuration (Figure 3.2a and Figure 3.2c). We consider two TSV and µbump-

based 3D-HI architectures (Figure 3.6b, Figure 3.6c) baselined against monolithic 2D (Fig-

ure 3.6a). Figure 3.6b represents a localized distribution of TSVs and µbumps (localized-

TSV 3D) while Figure 3.6c shows a uniformly spread areal TSV and µbump distribution

(areal-TSV 3D). After partitioning the 2D design (i.e. both logic and memory at 22nm), we

assumed a two-tier integration with a memory-on-logic approach, with memory at 22nm

and logic at 7nm.

The estimated power and network/dataset assumptions are summarized in Table 3.2.

The power-per-block and number of memory (switch matrix, memory arrays) and periph-

eral logic (shift-add, ADC, accumulation+activation+pooling, global buffer) are estimated

using NeuroSim V1.3’s mapper [90]. The logic and memory blocks are each mapped to

separate tiers. The difference in powers between 2D and 3D designs is because 2D (logic

and memory) is at 22nm while 3D logic is at 7nm and 3D memory is assumed to be at
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Figure 3.8: Charge phase for the maximum reference voltage in a SAR-ADC by the capac-
itive DAC. The reference voltages can be tuned to mitigate IR-drop by properly sizing the
capacitors. CREF is a reference cap of fixed size.

22nm. For this study, the assumed 3D-HI schemes are shown in Figure 3.6. For TSVs

in the bottom tier we assume 1µm diameter, 2 µm pitch and an aspect ratio of 10:1 (Fig-

ure 3.6b and Figure 3.6c).

We assume 4-bit SAR-ADCs are used to sense analog outputs at the columns of each

array. Because the logic tier is at a more advanced node, we can afford to include 1 SAR-

ADC per column in each RRAM array, improving throughput compared to a homogeneous

design where ADCs are commonly shared among multiple columns to limit their area over-

head.

To account for IR-drop in the inference simulations, the BL voltages were calculated as

follows:

VBL,j =
Req,j · (VDD − VIR)

Req,j +RPU

− VIR (3.1)

where j is the column in the memory array being considered, Req,j is the equivalent resis-

tance of the RRAM, RPU is the resistance of the pull-up PMOS and VIR is the IR-drop to

the memory block. The IR-drop from the power supply to the memory block is subtracted

from VBL and the IR-drop from the memory block to its corresponding block in the logic

tier is subtracted from the analog output voltage. Once reaching the logic block, the BL

voltages are quantized through comparison to reference voltages generated by the SAR-

ADCs. IR-drop to the logic tier affects the generation of these references (see Figure 3.8).

Noise from IR-drop to both tiers is realized as errors in the digital outputs of the ADCs.
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Figure 3.9: IR-drop contours for (a) baseline 2D, 2-tier localized-TSV 3D (b) memory and
(c) logic tier, and areal-TSV 3D (d) memory and (e) logic tiers (die size not to scale).

We propose a strategy to mitigate the effect of IR-drop on ADC outputs by fine-tuning

the capacitive DACs in the SAR-ADCs. The DAC depicted in Figure 3.8 uses a chain

of parallel capacitors to generate the reference voltages used to sense analog outputs. By

adjusting the size of these caps, the reference voltages can be tuned to account for the IR-

drop to both the memory and logic tiers. Because IR-drop is dependant on the location on

the die, each ADC can be separately tuned to offset the unique IR-drop in their respective

locations. To evaluate the effectiveness of this strategy, we used the IR-drop contours in

Figure 3.9 to adjust the cap sizes of each ADC in our inference simulation depending on

their mapped location on the die. We note that the calculated cap sizes are smaller than the

initial sizes, indicating that this strategy will result in a decrease in area overhead of the

ADCs.
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Figure 3.10: (a) Maximum IR-drop for considered configurations. (b) Steady-state IR-drop
for 2-tier M-on-L configuration as a function of microbump pitch and TSV distribution.

3.4 Results

3.4.1 PDN design benchmarking: TSV and microbump analysis

Figure 3.9a depicts the IR-drop contours for 2D (logic and memory at 22nm). Figure 3.9b,c

show noise contours for a 2-tier 3D with 40um microbump pitch and 1um diameter TSVs

localized in the center (localized-TSV 3D). The worst-case noise in the memory tier in-

creases from ≈13% of VDD to 26% between 2D and localized-TSV 3D. To mitigate this,

an areal distribution of TSVs and microbumps (Figure 3.6c) is considered (areal-TSV 3D).

Figure 3.9d,e present the contours for the areal-TSV 3D. The memory tier IR-drop was

reduced to ≈8% of VDD at iso-power. An areal TSV distribution could also have a keep-

out-zone area overhead but that is outside the scope of this work.

We observe that for localized-TSV 3D the memory tier IR-drop is minimal at the loca-

tions closest to the clustered TSVs and gets worse towards the die edges. The same trend is

present in the logic tier, however the absolute noise is lower for 3D logic tier since power

is directly delivered to logic through C4 bumps, similar to the 2D baseline. The worst-case

IR-drop is summarized in Figure 3.10a.

We also explored the impact of microbump pitch on the IR-drop of the considered 3D
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designs. Microbump pitch plays an important role in power delivery and with dense mi-

crobumps IR-drop will decrease. We considered a range of microbump pitches between

200-40 µm (Figure 3.10b). As expected, with a reduction in microbump pitch (increase

in bump density) the IR-drop reduces for both the localised-TSV 3D and areal-TSV 3D

designs. However, the areal distribution of TSVs contributes significantly more than mi-

crobump pitch in reducing IR-drop. A 3-tier design (logic+memory+logic) was also ex-

plored but the IR-drop to the top logic tier was prohibitive with a supply of 0.9V and our

power assumptions. We expect a full analysis for a multi-tier 3D design to be part of future

work.

3.4.2 Impact of PSN on CIM errors

For each design we simulated the inference operation of VGG-8 with IR-drop to the mem-

ory tier and logic tier according to IR-drop contours from the PDN analysis framework.

Each design was evaluated with and without tuning the size of the caps in the ADCs.

In Figure 3.11 we provide a map of the ADC errors distributed across the die for the

localized-TSV 3D design, verifying that areas with lower IR-drop correspond to lower

number of errors in ADC outputs. In this figure, each pixel represents the average number

of errors in the ADC outputs. The number of errors is defined as the sum of differences

between the simulated output and the ideal output. Because digital outputs range from

0-128, the maximum number of errors per digital output is 128. Noting this, we see in

Figure 3.11a that large IR-drop in certain areas of the die lead to every output state being

sensed incorrectly. We observe in Figure 3.11b that the cap sizing strategy can remove

many of the errors present in the ADCs. However, once the IR-drop in the memory tier

surpasses 170mV, or ≈ 19% of VDD, the strategy can no longer mitigate all of the errors.

This is because IR-drop reduces the total range of the output voltages from the memory

tier, reducing the sense margin of each state. When sense margins are too small, the ADCs

cannot sense all outputs correctly regardless of the size the capacitors in the DAC. Error
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TSV

(a) Localized-TSV 3D without sizing caps (b) Localized-TSV 3D after cap sizing

TSV

Figure 3.11: Average number of errors in ADC outputs for the localized-TSV 3D design
with and without the cap sizing strategy. 23,048 total memory arrays are mapped 1:1 to
blocks of ADCs in the logic tier.

maps for the 2D baseline and areal-TSV 3D case were excluded because the cap sizing

strategy removes all errors present in these cases.

In Figure 3.12a we average the number of errors across the entire die for each chip

design and the resulting inference accuracy is recorded in Figure 3.12b. We see that with

a localized-TSV 3D design and before cap tuning, the errors increase compared to 2D

baseline and they can be reduced with an areal-TSV 3D design. However this still leads to

a low inference accuracies in all three cases. After cap tuning, the errors can be completely

removed in both the 2D and areal-TSV 3D designs, resulting in the recovery of the baseline

inference accuracy. Interestingly, despite drastic improvement in errors in the ADC outputs

seen in the localized-TSV 3D case after capacitor sizing, the small number of errors that

can’t be mitigated have a significant impact on the overall inference accuracy, implying

that co-optimizing 3D PDN and ADC design parameters can be an important methodology

to achieve design robustness.

It is important to note that in all designs, IR-drop will reduce the sense margins for each

output state. Therefore, any additional noise in the system will have a greater impact on

the number of ADC errors than they would in the absence of IR-drop. In this study we
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Figure 3.12: (a) Number of errors in ADC outputs averaged over the entire die and (b)
corresponding inference accuracy for each design. A strategy of tuning capacitor size in
the SAR-ADCs was employed to mitigate errors caused by IR-drop. Simulations were
conducted in the absence of other chip non-idealities.

aimed to give a holistic analysis of the IR-drop in 3D-HI CIM systems and its effect on

inference accuracy. As such, we did not consider additional non-idealities present in CIM

(e.g., thermal noise caused by elevated temperature in 3D-HI). With the frameworks we

have developed such an analysis is feasible but is left to be studied in future works.

3.5 Related work

[118] demonstrated a resistive random-access memory (RRAM) based CIM macro with

solutions for IR-drop mitigation. They combined a hybrid analog/mixed-signal offset can-

cellation scheme and ICELLRBLSL drop mitigation with a low cell bias target voltage. Their

macro demonstrated robust operation (post-ECC bit error rate (BER) < 5×10−8 for 8WL

CIM) while maintaining an effective cell density 1.03 – 33.1× higher than prior art and

achieving 1.74 – 13.35× improved average MAC efficiency relative to the previous highest-

density RRAM CIM macro. In [119], to address the challenges of increased errors in MAC

operations in non-volatile memory arrays due to steady-state (IR-drop) and transient noise,

the authors propose a sign-weighted 2T2R (SW-2T2R) array to reduce IR-drop by de-

creasing the accumulative SL current (ISL), and thus, enabling higher parallelism. They
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implement a fully-integrated 784-100-10 multi-layer perceptron (MLP) model on an inte-

grated CIM chip with 158.8kb analog ReRAMs. Their chip realizes an accuracy of 94.4%

on MNIST database, an inference speed of 77 µs/image, and 78.4 TOPS / W peak energy

efficiency, with CMOS circuits fabricated in a 130nm process. [120] presents character-

ization of the impact of IR-drop and device variation (calibrated with measured data on

foundry RRAM) and evaluates different approaches to write verify. Using various voltages

and pulse widths, the authors program cells to offset IR-drop and demonstrate a 136.4×

reduction in BER during CIM.

3.6 Conclusion

A comprehensive design-space exploration of power delivery network design for 3D het-

erogeneously integrated CIM hardware is presented. A device-integration-application eval-

uation methodology is proposed to facilitate early design-space exploration and trade-offs

between power delivery design parameters and CIM performance metrics are quantified.

By co-optimizing across design hierarchies from packaging to circuits and devices, we

present an areal-TSV 3D CIM design and compare it to a localized-TSV 3D implemen-

tation. For our assumed 3D CIM hardware, an areal distribution of through-silicon via

(TSV) and microbumps, and a PSN-aware SAR-ADC fine-tuning achieves a 90% infer-

ence accuracy compared to 47% with a unoptimized 3D design at iso-area and iso-power.

The insights provided could be useful for design convergence and performance modeling

for edge intelligent 3D hardware.
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CHAPTER 4

3-D HETEROGENEOUS INTEGRATION OF RRAM-BASED

COMPUTE-IN-MEMORY: IMPACT OF INTEGRATION PARAMETERS ON

INFERENCE ACCURACY

4.1 Introduction

Compute-in-memory (CIM) has been proposed as a potential paradigm for energy-efficient

compute through reduced data movement and increased parallelism in deep neural net-

work (DNN) computations as state-of-the-art machine learning model parameters grow

exponentially (upto 100’s of MB [13]). Emerging nonvolatile memory (eNVM), such as

resistive RAM (RRAM), phase change memory (PCM) etc. are potential alternatives to

SRAM/DRAM as CIM synaptic devices due to their higher bit density and low leakage,

enabling large embedded memory and high energy-efficiency.

Among various heterogeneous integration architectures, such as MCM, 2.5-D, and 3-

D, 3-D-HI can provide higher compute density and energy-efficiency through a reduced

footprint and interconnection length, respectively, compared to MCM and 2.5-D. A grow-

ing need for higher logic-memory bandwidth and lower chip-to-chip signal interconnec-

tion delay have led to a technological push towards 3-D-HI such as through-silicon via

(TSV)-based 3-D integrated circuits (ICs) [68, 69, 70]. Although 3-D-HI can enable dense

memory-logic integration needed for state-of-the-art CIM hardware accelerators using,

there are some challenges with dense 3-D integration of eNVM devices such as RRAMs.

Figure 4.1 illustrates the power densities of recent CIM and hardware accelerator mono-

lithic 2D chip demonstrations, and an average increasing trend can be observed. To lever-

age the benefits of 3-D integration for CIM/accelerator hardware, with such a trend in in-

creasing power densities, thermal effects such as inter-die thermal coupling and increased

58



2 0 1 8 2 0 1 9 2 0 2 0

0 . 1

1

1 0

V L S I ' 1 8  T s i n g H u a / N T H U

I S S C C ' 2 0  S t a n f o r d

L - S S C ' 2 0  A S U / G a t e c h

J S S C ' 1 9  A S U / C o l u m b i a

J S S C ' 1 9  P r i n c e t o n
I S S C C ' 1 8  U I U C

I S S C C ' 1 8  M I T J S S C ' 2 0  P r i n c e t o n

I S S C C ' 2 0  T S M C
 1 3 0 n m  R R A M  +  C M O S
 9 0 n m  R R A M  +  C M O S
 6 5 n m  S R A M
 2 8 n m  S R A M
 7 n m  S R A M

Po
we

r D
ens

ity
 (W

/cm
2 )

Y e a r
Figure 4.1: Power density trend of recent CIM and hardware accelerators.

number of hotspots could pose a significant challenge in terms of performance and relia-

bility implications. This is because 3-D ICs can experience a significant variation in power

densities compared to monolithic 2D and thermal performance may not scale linearly. Ad-

ditionally, thermal-induced conductance drift remains a challenge in resistive filamentary

devices such as RRAMs [121] despite their promising features as CIM synaptic devices.

Due to increased volumetric power in 3-D, lower retention at higher temperatures can be

more significant in dense memory-logic 3-D integration. Although prior work has inves-

tigated device retention degradation due to thermal crosstalk in high-density 3-D integra-

tion of RRAMs [122] and there has been extensive characterization of RRAM reliability

mostly focused on memory applications [123], there are no previous studies that consider

the impact of integration design parameters and device reliability together on system-level

performance metrics for CIM applications (such as CIM inference accuracy). Shim et

al. [124] performed statistical measurement and modeling of retention characteristics of

multilevel RRAM-based synaptic arrays at different temperatures. They measured average

conductance of a 2-bit per cell 1T1R HfO2 based RRAM test chip, as a function of bak-
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Figure 4.2: Considered (a) 2D, (b) 3-D-layer by layer (3-D-LL) and (c) 3-D-pipelined (3-
D-PP) (2-tier, 3-tier and 5-tier) architecture configurations.

ing temperature. They reported a reduction in average conductance of the cells over the

baking time, with a significant conductance drift rate in intermediate states. The reasoning

provided for this effect was the relatively low stability of the weak conductive filament for

intermediate states. Although their measurement-calibrated retention model was utilized

to estimate the impact on CIM inference accuracy, their work only considered a mono-

lithic 2D integration of CMOS logic and RRAM and thus were limited to conventional 2D

evaluation.

Thus, it is important to perform early exploration to study long term reliability of such

heterogeneous 3-D logic-memory CIM systems and benchmark different types of integra-

tion architectures from a system performance perspective. The main contributions of this

article are:
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Figure 4.3: Device-integration-application-level 3-D CIM reliability evaluation flow.
(Note: Tj,max = Memory tier maximum junction temperature (oC); P=Total package power
(W); heff :=Effective heat transfer coefficient of heat sink (W/m2.oC); R=RRAM device
resistance (Ω), t=time (sec).
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Table 4.1: Power-performance trade-offs between 3-D and 2D for CIM

Metric 2D-LL 3D-LL 3D-PP
Area (mm2) 115.1 3.7 56.2

Throughput (TOPS) 1.4 1.9 1226.5

TOPS/W 7.9 12.9 12.2

TOPS/mm2 0.01 0.5 21.8

W/mm2 0.0015 0.04 1.8

1. A device-integration-application-level reliability evaluation methodology is proposed

that can be used to quantify the direct impact of integration design parameters on

CIM inference accuracy.

2. Using this flow, heterogeneous 3-D logic-memory CIM accelerator designs -

TSV-based 3-D and Monolithic 3-D-based integration of logic (7nm CMOS) and

memory (22nm RRAM) tiers - are benchmarked against monolithic 2D and

balanced integration design parameters for maximized 3-D CIM inference accuracy

are reported.

3. We release the benchmark framework as an open-source tool

(https://github.com/i3dsystems/3D CIM thermal v1.0).

4.2 3-D vs 2D trade-offs for CIM

A 3-D-integrated analog CIM accelerator model was evaluated previously [113]. We ap-

plied the TSV design of CIM accelerators (7nm logic and 22nm RRAM memory) on 8-bit
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Figure 4.4: Considered (a) TSV-based 3-D and (b) Monolithic 3-D CIM configurations.
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Figure 4.5: Considered (a) 2-tier, (b) 3-tier, and (c) 5-tier 3-D configurations.

ResNet-34 [125] inference for ImageNet (further details available in [113]). From an ar-

chitectural perspective, we consider:

1. A layer-by-layer (LL) system (Figure 4.2b) with one logic tier on the package sub-

strate and multiple memory tiers stacked on top (as a memory cube), which consumes

low power but offers low speed, and

2. A pipelined (PP) system with 3-D interleaved logic and memory tiers (Figure 4.2c),

which offers high speed but consumes high power.

Figure 4.2 shows the floorplans of baseline 2D, 3-D-LL and 3-D-PP configurations (logic

in blue and memory in green). Table 4.1 provides a comparison of 2D baseline and 3-

D-LL and 3-D-PP designs with 1µm TSV using this model. For 3-D, memory (RRAM)

is assumed at 22 nm and logic (peripheral) is assumed at 7nm. For 2D, logic area was

scaled from 7nm to 22nm to keep both logic and memory (RRAM) at 22nm (≈8× area

scaling). The 2D design is assumed as an LL architecture, as a PP design would require a
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large number of memory arrays (for weight duplication), peripheral circuits, and buffers (to

serve different DNN layers independently) on chip which leads to a prohibitively large 2D-

PP area. The total number of operations (total computations needed for inference workload)

for both 3-D-PP and 3-D-LL designs were fixed. The performance per watt is 63% higher

with a 3-D-LL implementation vs 2D-LL. The operation-density (TOPS/mm2) is 50× and

>2000× higher with 3-D-LL and 3-D-PP, respectively, vs 2D-LL. However, with similar

TOPS and lower area this leads to a higher power density in both 3-D-LL and 3-D-PP vs

2D-LL.

With 3-D-PP the CIM weights need to be duplicated to synchronize timing between

different sized convolutional layers which corresponds to more buffers and ADCs for a PP

design. Due to this 3-D-PP has a larger logic area and total power than 3-D-LL. This also

means that the 3-D-PP on-chip interconnect length is larger than 3-D-LL leading to added

energy and latency due to longer interconnect in 3-D-PP. Due to higher power dissipation

than 3-D-LL, 3-D-PP also experiences higher leakage. Due to these two reasons 3-D-PP

has a lower TOPS/W than 3-D-LL. From Table 4.1 it is clear that both 3-D designs offer

higher throughput, performance-per-Watt, and operation density compared to 2D baseline.

In this work, we only considered the dynamic energy of CIM arrays and peripherals. Since

RRAMs exhibit negligible leakage their dynamic energy dominates. For CMOS peripherals

(ADC, reference voltage circuits, etc.) the total power should be re-estimated after junction

temperature simulations. Although this re-estimation was not part of this version of the

methodology (section 4.3), we plan to update our flow as part of future work. The thermal

performance trade-offs between 2-D and 3-D CIM are evaluated in the following sections.

4.3 Thermal-driven 3-D CIM reliability evaluation methodology

4.3.1 Simulation Flow

Figure 4.3 illustrates the proposed implementation methodology used to quantify the im-

pact of 3-D integration design parameters on CIM inference accuracy [126, 127]. This
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Figure 4.6: A modified version of the FVM-based thermal modeling framework described
in [128] was used to model the considered integration structures.

flow combines a finite volume method (FVM)-based thermal analysis framework with a

measurement-calibrated binary RRAM retention model and a CIM inference accuracy esti-

mation framework, to perform a device-integration-application-level reliability evaluation.

Details of each flow component are described as follows:

Thermal analysis

A modified version of the FVM-based thermal modeling framework described in [128] was

used to model the considered integration structures, shown in Figure 4.4 and Figure 4.5,

and perform steady state thermal simulations described later in this chapter. Inputs for this

step include a flattened layout of the modeled CIM IP (such as memory array, ADCs, etc.),

power excitation maps for each active tier/die based on the flattened layout, and a descrip-

tion of the die stack-up, i.e. the bulk material, interconnects, and dielectrics along with their

thermal properties (thermal conductivity, specific heat capacity, etc.). The modified version

of the flow (from [128]) that was used in this work is shown in Figure 4.6. The key con-

tributions include: a) updated assumptions of the technology library such as material prop-

erties and heat transfer coefficients for accurate modeling of packaging architectures, and
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b) support for interface with open source tools such as DNN+NeuroSimV1.xx (a pre-RTL

simulator [90]). For validation, the memory tier maximum junction temperatures (Tj,max)

from our thermal models were compared with finite-element ANSYS Mechanical APDL

models (ver. 2021 R1). The maximum deviation in Tj,max and Tj,min between our models

and ANSYS was 3.3 %. Table 4.2 summarizes the power and boundary conditions as-

sumptions for these simulations. Although this study focuses on steady-state analysis, this

framework also supports transient analysis with multi-die transient power maps including

package and boundary condition definition (described in section 4.4.1).

RRAM retention

RRAMs have two switching mechanisms, non-filamentary and filamentary switching [129,

121]. This work analyzed filamentary switching because this type is commercialized in in-

dustry (e.g. IMEC, Winbond, TSMC all have used filamentary HfO2 stacks). One concern

with non-filamentary RRAM so far is that though it could support multilevel states, the

retention of the intermediate states might not be stable, which could be a critical problem

for weight drifting for DNN inference. We expect the study on non-filamentary type of

RRAM to be a part of future work.

For the use of RRAM in CIM applications multiple circuit architectures have been

proposed. Since the resistance states of RRAM can be continuously tuned, a crossbar

RRAM array can be used for in-memory matrix-vector-multiplication calculations that are

the core operations of different neural networks and is the intended application in this work.

RRAM can also be used as a digital memory which only contains two states for binary

applications [123]. In this work, we utilize arrays of 1T1R binary RRAMs for in-memory

matrix-vector-multiplication calculations. While this methodology is being used for binary

CIM architectures, it can also be applied to multi-level analog RRAM CIM architectures

(and other devices such as ferro-electric FETs (FeFET), PCM, etc.), which will be part of

future work.
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Table 4.2: Experimental Setup

Parameter Value
Number of chips/tiers 1, 2, 3, 5 (logic, memory)

Chip size (mm2) 26.81 × 26.81 (2D)

9.69 × 9.69 (TSV-3D, 2 tiers)

8.36 × 8.36 (M3D, 2 tiers)

5.70 × 5.70 (TSV-3D, 5 tiers)

4.94 × 4.94 (M3D, 5 tiers)

Chip bulk thickness (µm) Top die: 315 - 700

Bottom die: 20 (TSV-3D), 3 (M3D)

Package dimensions 15 mm × 15 mm × 1 mm

Heat Sink type air-cooled

Heat spreader 60 mm × 60 mm × 4.5 mm

TIM thickness TIM1: 30 µm, TIM2: 20 µm

h (W/m2-oC) 4.4 × 103 (air) [130]

Ambient Temperature 27 oC

Total Power (W) 118.6

Total logic: 114.85, Total memory: 3.76

Device 1-bit per cell RRAM [116],

Ron = 20.7 kΩ, Roff = 100 kΩ

Network VGG-8

Dataset CIFAR-10

The memory tier Tj,max, as a function of integration design parameters such as archi-

tecture, number of tiers, input power, boundary conditions, etc., is an input to the second

part of this flow that consists of a measurement-calibrated HfO2-based binary RRAM de-

vice model [116]. This analytical model is used to estimate device resistance variation over

time, which is converted to a resistance drift ratio. The drift ratio is calculated as (R10

- Ron)/Ron, where Ron is the device low resistance state (LRS) resistance and R10 is the

device resistance at 10 years operating at a specific junction temperature.

Ideally, an areal distribution of device junction temperatures (Tj) should be used for

such an analysis where each device may experience different resistance drift leading to
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Table 4.3: Tier-level Power Breakdown

Number of Tiers Each Logic Each Memory
Tier (W) Tier (W)

2 tiers (L-M) 114.85 3.76

3 tiers (L-M-L) 57.26 3.76

5 tiers (L-M-L-M-L) 38.18 1.8

Table 4.4: Interconnect Assumptions

Interconnection
Attribute TSV-3D M3D

TSV/ILV diameter (µm) 1 0.1

Number of vertical vias between two tiers 5.9×106

TSV/ILV total area (mm2) 23.60 0.24

Microbump/bonding pitch (µm) 36 0.1

Bonding layer thickness (bump height) (µm) 18 0.05

differences in retention characteristics. Therefore, using a junction temperature contour

to include separate device-level (or a finer granularity than Tj,max) drift models in our

inference simulations, depending on their mapped location on the die, could provide a

more realistic impact on inference accuracy but can be more computationally expensive.

The goal of this work was to establish the co-analysis methodology from device/integration

towards application-level analysis and we assumed a conservative initial approach. We plan

to include the areal distribution of drift as part of future work.

CIM inference accuracy estimation

Device retention change in RRAM-based CIM inference or training accelerators can cor-

respond to a change in locally stored DNN weights/inputs/outpus (for weight-, input- or

output-stationary dataflows [131], respectively), thus affecting the accuracy of an inference

operation. The device retention drift ratio obtained from the previous step is used to adjust

the drift coefficient of a retention model within DNN+NeuroSimV1.3 (a popular framework
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Figure 4.7: Floorplans and block-based power densities of the two-tier CIM accelerator
configuration using: TSV-3D (a) logic tier, (b) memory tier and M3D (c) logic tier, (d)
memory tier

to benchmark CIM accelerators [90]), to estimate the variation of CIM inference accuracy.

Using this flow, CIM inference reliability is studied to benchmark integration architec-

tures and 3-D partitioning configurations defined in the next two sections.

4.4 Experimental Setup

4.4.1 Device, Chip, Package, Boundary Conditions, and CIM Inference Assumptions

The details of chip, package, heat spreader dimensions and boundary conditions are sum-

marized in Table 4.2. From an architectural perspective a baseline 2D monolithic design is

partitioned and arranged into multi-tier 3-D configurations as shown in Figure 4.2. Two 3-D

integration architectures were considered: 1) TSV and µbump-based 3-D and 2) monolithic

3-D (Figure 4.4). After partitioning the 2D design, we assumed a two, three, and five-tier

integration approach with alternating logic and memory tiers, similar to a five-tier pipelined

(PP) system described in [113] and shown in Figure 4.5. The difference in chip sizes for

TSV-3D and M3D arises due to the total difference in TSV/inter-layer via (ILV) area, as

the considered TSVs occupy larger area compared to ILVs. We assume a state-of-the-art

air cooling boundary condition [130]. For CIM-based inference, we assume an array of

1-bit per cell RRAM (Ron = 20.7 kΩ, Roff = 100 kΩ) [116], using the VGG-8 network for

the CIFAR10 dataset.
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4.4.2 Block-based Power Estimation

The floorplans and block-based power distribution for each logic and memory tier are

shown in Figure 4.7. The power per block and number of blocks are estimated using

DNN+NeuroSimV1.xx (a pre-RTL simulator [90]). The network, dataset, and device as-

sumptions are summarized in Table 4.2. NeuroSim’s mapper was used to estimate the

number of memory (switch matrix, memory arrays) and peripheral logic (shift-add, ADC,

accumulation + activation + pooling, global buffer) blocks for the assumed network and

dataset. The energy (CV2) for both the logic and memory blocks is estimated using Neu-

roSim. The logic and memory blocks are each mapped to separate tiers (top/middle/bottom)

in both TSV-3D and M3D cases (Figure 4.4). In this study, we assume that the circuits are

operating for a long time and that the average dynamic power for both the logic and memory

tiers remain constant. We do not explicitly model switching characteristics of the devices,

and assume the device switching is averaged over the power profile. As part of future work,

workload dependent characteristics of the power profile could be introduced which could

be used to analyze the transient noise characteristics of the assumed CIM hardware. For

this study, the assumed 3-D integration schemes are shown in Figure 4.4 and Figure 4.5.

The estimated total power per logic and memory tiers are mentioned in Table 4.3.

4.4.3 3-D Interconnection assumptions

The tier-to-tier interconnection (vias, I/Os) assumptions for the assumed PP architecture

are summarized in Table 4.4. Each RRAM sub-array is assumed to be 128×128 and it

is assumed that for each RRAM array, each row and column require an access connec-

tion. Hence, for our assumption of a 128×128 array, we need 128+128 connections per

array. Multiplying this with the number of memory arrays, the total number of die-to-die

interconnections required are obtained. For the TSV-3D case, a 1 µm TSV diameter was

assumed for two reasons: 1) the total TSV area overhead with TSV diameter > 1 µm (as-

suming TSV pitch = 2×diameter) becomes a significant portion of the total active area for

69



the number of required TSVs, and 2) for the PP architecture it was previously reported that

the overall system throughput (in tera operations per second or TOPS/sec) starts to satu-

rate for TSV diameter ≈ 3 µm or lower because the TSV parasitic capacitance becomes

negligible compared to CMOS gate loading capacitances [113]. For the M3D case, the

inter-layer via (ILV) diameter was assumed as 0.1 µm [132]. We assumed a 36 µm die-

to-die microbump pitch (TSV 3D) [133], and the microbump height was assumed to be

0.5×microbump pitch. While for M3D, the tier-to-tier I/O bonding pitch was assumed to

be 0.1 µm with a bond height of 0.5×bonding pitch.

Keep-out-zones (KOZ) help in avoiding cells being placed too close to TSVs which

can cause carrier mobility variation. Two primary design considerations concerning KOZ

are: hotspot mitigation and prediccarrier mobility. We find two key trade-offs in TSV

and KOZ scaling from a thermal perspective: 1) smaller KOZ and smaller TSV diameter

[134] can help lower thermal resistance between adjacent tiers which could be beneficial

for thermal spreading, but could also increase thermal coupling between high- and low-

power tiers (e.g. logic and memory) leading to higher thermal-induced conductance drift

(in eNVM); 2) larger KOZ with larger TSV diameter means higher area footprint [135]

but it can improve thermal spreading due to increased bulk substrate volume. For design

simplicity, we do not consider KOZ effects in this work and only model the inter-TSV

spacing (assuming TSV spacing = TSV diameter).

4.5 Results

4.5.1 Steady state evaluation of 3-D CIM configurations

Three partitioning configurations were considered for both TSV-3D and M3D cases: 1) two

tiers: memory-on-logic (M-on-L) and logic-on-memory (L-on-M), 2) three tiers (L-M-L),

and 3) five tiers (L-M-L-M-L). A summary of ∆Tj,max relative to the 2D baseline for each

configuration is presented in Figure 4.8 and the contours for logic and memory tiers (2-tier

configuration) are shown in Figure 4.9.
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Figure 4.8: Increase in maximum temperature for different 3-D configurations in (a) TSV-
3D and (b) Monolithic 3-D relative to 2D baseline.
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Figure 4.9: Steady state memory tier junction temperature contours for 2-tier TSV-3D (a)
logic tier, (b) memory tier, 2-tier M3D (c) logic tier, (d) memory tier, and (e) monolithic
2D.

Relative temperatures (∆Tj,max) for each tier within all M3D configurations are similar

to each other due to the low tier thickness leading to a low inter-tier thermal resistance.

For both 2-tier configurations (M-on-L and L-on-M) using air-cooling, TSV-3D leads to

a lower memory ∆Tj,max than M3D (≈8oC vs ≈13.2oC). This is due to the additional

thermal resistance of underfill material in TSV-3D that provides better thermal isolation

between logic and memory tiers. The absolute temperatures in both 2-tier configurations

and in the 2D case, with the assumed boundary conditions, were not high enough to affect

device retention. Redesigning the CIM system to increase the number of tiers through par-

titioning can provide higher throughput (TOPS) and operation density (TOPS/mm2) using

die-level pipelining (Table 4.1 and Figure 4.2c). However, the Tj,max increases consider-

ably (Figure 4.8) so as to affect device retention and, therefore, long-term performance i.e.

accuracy of image inference operations.

4.5.2 RRAM thermal reliability in multi-tier TSV-3D and M3D

The details about considered RRAM device are noted in Table 4.2. The memory tier’s

retention behaviours for a binary RRAM device integrated in TSV-3D and M3D configura-

tions are shown in Figure 4.10. We estimated the resistance values at 10 years (predicted by

a measurement calibrated HfO2 RRAM device model [116]), to find the resistance drift ra-

tio with respect to the original LRS resistance. At higher junction temperatures the device

has lower retention robustness. M3D with 5 tiers observes the highest device resistance
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Figure 4.10: Memory tier (binary RRAM) retention for TSV-3D and M3D, both air cooling.

Baseline

Figure 4.11: CIM inference accuracy comparison between monolithic 2D, TSV-3D and
M3D (with air cooling).
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Figure 4.12: CIM inference accuracy @10 years as a function of number of tiers.
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Baseline

Figure 4.13: CIM inference accuracy as a function of top die bulk thickness.

drift due to the highest memory tier junction temperature, followed by the TSV-3D 5-tier

configuration. The 2D and 2-tier 3-D configurations did not show any observable drift due

to low vertical thermal resistance and larger die area for heat exchange leading to lower

memory Tj,max.

The drop in retention with air-cooling is reasonably delayed (observed post t=107sec)

mainly because the heat spreader dimensions (area and thickness) were increased to ensure

that Tj,max across all configurations is below 125oC [136]. The tradeoff is that this leads to

a large heat spreader introducing thermo-mechanical challenges. Such high junction tem-

peratures can be further reduced with advanced thermal management techniques such as

microfluidic cooling [137, 138, 139, 140, 141, 142]. Thermal-aware design-time partition-

ing [143, 144, 145] is an alternative approach, from a design standpoint, to mitigate high

junction temperatures and optimize for latency and energy in 3-D ICs.

4.5.3 Multi-tier CIM Inference Accuracy

Device retention is a key factor impacting long term inference accuracy in RRAM-based

CIM accelerators. The drift coefficient calculated from the retention data is used to adjust

the retention speed in NeuroSim’s [90] device retention model. The impact of integration

architectures on CIM inference accuracy for 2-D and 3-D accelerator designs based on
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VGG-8 for the CIFAR-10 dataset is shown in Figure 4.11. Due to higher memory tier

Tj,max in both 5-tier M3D and 5-tier TSV-3D compared to the 2D baseline, even after

using an optimistic air-cooling configuration, the drop in inference accuracy at 10 years

was ≈80%. Figure 4.12 compares inference accuracies for all configurations @ 10 years.

In comparison to the 2D baseline, 2- and 3-tier configurations show minimal deviation from

the baseline accuracy of 90% while redesigning 2D into 5-tiers leads to significant loss in

accuracy. This significant reduction in inference accuracy can be mitigated with appropriate

design-time partitioning of the 3-D stack and using more efficient thermal management

architectures such as microfluidic cooling [137, 138, 139, 140, 141, 142]. For our assumed

device, integration and application parameters, a 3-tier configuration provides a balanced

design option between thermal and application performance.

This analysis demonstrates the potential cost of achieving higher performance through

die stacking. By stacking up to five dies in a logic-memory-logic-memory-logic design

(pipelined or PP design) we can achieve ≈1.5 × higher performance-per-watt compared to

monolithic 2-D (Table 4.1) at the cost of ≈ 55 oC increase in junction temperature (Fig-

ure 4.8a) and an 80 % loss in inference accuracy (Figure 4.12).

4.5.4 Impact of Bulk Thickness

The top die silicon bulk thickness was varied for the TSV-3D 5-tier configuration to study

the impact on image inference accuracy. The results are summarized in Figure 4.13. In-

creasing top die thickness increases the stack thermal resistance, which leads to a higher

memory junction temperature. Compared to the 2D baseline, all 5-tier TSV-3D configura-

tions observe ≈ 80% reduction in inference accuracy @10 years. Additionally, increasing

top die bulk thickness also increases the rate of loss of accuracy, as seen in Figure 4.13

where going from 100 µm to 600 µm, accuracy drops faster with time.
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4.6 Conclusion

A device-integration-application evaluation methodology is proposed that is used to quan-

tify the impact of integration architectures on RRAM reliability for CIM applications. Two

heterogeneous 3-D logic-memory CIM accelerator designs - TSV-based 3-D and Mono-

lithic 3-D-based integration of logic (7nm CMOS) and memory (22nm RRAM) tiers - were

benchmarked against monolithic 2D and balanced integration design parameters were re-

ported for maximized 3-D CIM inference accuracy. For our assumed device, integration

and application parameters, a 3-tier configuration provides a balanced design to achieve

optimal system performance. The PP schemes are preferred for high-performance systems,

with high operating temperature being a potential trade-off that can be improved with ad-

vanced thermal management and cooling architectures.
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CHAPTER 5

BEOL-EMBEDDED 3D POLYLITHIC INTEGRATION: THERMAL

CONSIDERATIONS AND IMPLICATIONS ON BEOL RRAM PERFORMANCE

FOR CIM APPLICATIONS

5.1 Introduction

With increasing integration complexity and power densities in 3D integrated ICs, heat dis-

sipation, thermo-mechanical reliability, and inter-die bonding yield are becoming challeng-

ing. In this research, we explore two such challenges of the proposed technology, which we

term 3D Seamless-off-Chip-Connectivity (3D SoC+). First, we evaluate the thermal con-

straints for 3D SoC+ with aggressive cooling to investigate thermal limits from transient-

and steady-state perspectives. Second, we present a study to evaluate the impact of cool-

ing architectures on binary RRAM devices in a 3D IC form factor by quantifying image

recognition accuracy over time of a compute in-memory accelerator based on RRAM.

The rest of the chapter is organized as follows: Section 3.2 describes the proposed 3D

SoC+ scheme and reports a steady state thermal evaluation of SoC+ tier junction temper-

atures (Tj) as a function of (a) embedded tier power density, (b) embedded tier thickness,

(c) inter-tier BEOL thickness, and (d) dielectric thermal conductivity variation. A transient

thermal analysis to estimate inter-tier thermal coupling is also presented. In section 3.3, the

thermal implications of 3D polylithic integration on BEOL RRAM performance for CIM

applications are presented.

5.1.1 Polylithic 3D Integration

A 3D polylithic integration scheme is proposed in this work. As shown in Figure 5.1, this

scheme represents a densely integrated system divided into multiple device tiers where cus-
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Figure 5.1: Proposed 3D Seamless off-chip Connectivity (SoC+) concept: BEOL-
embedded chiplet integration

tom chiplets, such as voltage regulator modules (VRMs), I/O drivers, and RF front-ends

are embedded into the back-end of an application processor (AP) tier with a monolithic

memory tier, e.g. RRAM. The proposed 3D SoC+ concept aims to combine the best of

both monolithic and TSV-based 3D ICs, including extreme efficient signaling and large

bandwidth density (BWD). The proposed scheme can be enabled by high-density intercon-

nections and high-accuracy self-alignment techniques.

5.2 Thermal Exploration of BEOL-Embedded Chiplet Integration

The majority of the heat generated in high-power 2D packages is typically extracted through

the bulk substrate and encounters the thermal resistances associated with conduction through

the bulk, thermal interface material (TIM), and the heat spreader. However, in high-power

3D packages, the heat is generated in multiple active layers along the 3D stack and thus,

the heat extraction path includes thermal resistances from the bulk, BEOL, and bond-

ing/underfill layers [146]. Therefore, in this section, we describe the proposed 3D SoC+

scheme and investigate the impact of various design parameters on thermal performance.
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5.2.1 3D SoC+ Integration Scheme: Proposed Architecture

As discussed in the previous section, the goals of polylithic integration are primarily twofold:

(a) to maintain integration heterogeneity by allowing one to integrate chips that are made

from different materials or in different technology nodes, and (b) to increase chip-to-chip

connectivity compared to TSV-based 3D integration to attain monolithic-like interconnec-

tion density. The proposed BEOL-embedded integration scheme shown in Figure 5.1 aims

to achieve these goals.

The proposed 3D SoC+ architecture consists of multiple active tiers with multiple

chiplets embedded within the BEOL of a primary base chip, such as an application pro-

cessor (AP), as shown in Figure 5.1. The base tier (tier 1) consists of active devices in

the primary bulk substrate (such as Si), and the first few metal layers of the BEOL. This

AP tier is followed by a memory device tier (tier 2), which can be a monolithic memory

layer such as resistive RAM (RRAM) [147]. The presence of a monolithic memory tier is

application specific as it introduces stringent device, material, and temperature constraints

on the fabrication process akin to monolithic 3D IC fabrication. The BEOL following

tier 2 encapsulates custom chiplets, such as logic, memory, VRMs, I/O drivers, passives,

RF front-end chips, etc., which are bonded to tier 2 using high-density low-temperature

interconnections. Given the potential for high-power density in such an approach, it is

envisioned that such a 3D stack may require single or dual-sided microfluidic cooling, as

shown in Figure 5.1.

5.2.2 System Description and Specifications

We modeled the SoC+ structure using a finite-volume based thermal modeling framework

described in [128]. We compared maximum junction temperatures for a steady state simu-

lation to validate our SoC+ thermal model against ANSYS Mechanical APDL solver (ver.

19.2). The simulations were performed for high and moderate power densities use cases

(defined in Table 5.1). For the high-power density case, the maximum relative error in
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Table 5.1: SoC+ thermal simulations: design specifications and assumptions

Tier / Chiplet
Power

Density
(W/cm2)

Dimensions
(mm×mm×µm)

Bulk
Mate-

rial

Tier 1 (base) (AP) 100 10×10×157 Silicon

Tier 2 (RRAM) 5 10×10×8 Silicon

64emTier 3 (with embedded chiplets) Chiplet 3 5/50 2.5×3×12 Silicon

Chiplet 4 5/50 2.5×3×12 Silicon

Chiplet 5 5/50 2.5×3×12 Silicon

Chiplet 6 5/50 2.5×3×12 Silicon

Chiplet 7 5/50/500 2.5×3×12 Silicon

Chiplet 8 5/50 2.5×3×12 Silicon

maximum and minimum junction temperature rise between our model and ANSYS is less

than 12.5 % whereas for the moderate power density case, the maximum deviation was less

than 2.6%. The highest percentage error in the high-power density case was observed only

for chiplet 7 (tier 3), which was designed to have the highest power density (500W/cm2),

and the region in the memory tier that was right above chiplet 7. However, junction tem-

perature percentage errors for all other chiplets and tiers were less than 2.4%. Below, we

describe the modeling specifications and assumptions.

Power Dissipation Configurations

The tier power densities and dimensions are defined in Table 5.1. The power densities

chosen for the AP and memory tiers are similar to high-end limits for modern designs.

The power densities chosen for the embedded tier (tier 3) correspond to moderate and high

power use cases of VRMs and RF front-ends. The materials mentioned for each tier in

Table 5.1 correspond to plausible choices for each tier. For simplicity, Si was chosen as the

bulk material for all thermal simulations in this chapter.
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Table 5.2: Material specifications

Layer Conductivity (W/m.K) Heat
Capacity

Mass
Density

In-Plane Through-Plane (J/°C.Kg) (Kg/m3)

TIM 3 1000 2900

Heat-spreader 400 385 8690

Si bulk 149 705 2329

BEOL 61.173 1.6225 433 7783

Bonding (Cu+ILD) 1.6 1000 2100

Tier Dimensions and Materials

Table 5.1 lists the assumed SoC+ tier dimensions. Ideally, we seek extremely thin dice for

back-end integration to reduce overall 3D IC form factor. However, choosing embedded

chiplet thickness presents a trade-off between die thinning and handling, and dielectric

thickness. In this chapter, we assume the total thickness of each chiplet in tier 3 as 12 µm.

The total thickness assumed for tiers 1 and 2 is 157 µm (150 µm Si bulk, 5 µm BEOL, 2 µm

bonding layer) and 8 µm (3 µm Si bulk, 3 µm BEOL, 2 µm bonding layer), respectively. 2

µm thick BEOL layers were considered both between tiers 1-2 and tiers 2-3.

Table 5.2 lists the material properties [148] of the layers in the 3D SoC+ stack. The

bonding layer is assumed to consist of copper and inter layer dielectric (ILD; assumed as

SiO2).

Cooling configurations and boundary conditions

Boundary conditions are modeled as effective heat transfer coefficients applied uniformly

over the area of a surface to be cooled. The ambient temperature is assumed to be 38

°C [148]. The impact of various design parameters on the thermal performance of the

proposed 3D SoC+ scheme was evaluated in the presence of the following two types of

cooling configurations:

(a) Air cooling: We model an air-cooled heat-sink mounted on the top of the stack with

the following layers between the heat-sink and tier 1 bulk: a top TIM, a heat-spreader, and
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a bottom TIM. Sarvey et.al. [149] conducted an experiment to compare the performance

of an air-cooled heat-sink to that of a microfluidic heat-sink for a cooled surface area of

approximately 9 cm2 and reported the junction-to-ambient thermal resistance for a high-

end air-cooled heat-sink as 0.25 °C/W. With these assumptions, an upwards effective heat

transfer coefficient of 4.44×103 W/K·m2 (heff,up) was used for our simulations, applied

on the top TIM surface. The TIM and heat-spreader dimensions and material properties

were assumed to be the same as specified in [148]. However, it is important to note that to

effectively model a state-of-the-art air-cooled heat-sink suifor the assumed package power,

a detailed design of experiments is required to determine appropriate heat-spreader dimen-

sions for desired case-to-ambient thermal resistance. A natural cooling of 10 W/K·m2

(heff,bot) is applied to the bottom surface under the stack.

(b) Dual-sided cooling (DSC): DSC refers to active cooling of top and bottom surfaces

in a stack. Brunschwiler et. al. [150] have demonstrated microfluidic channels embed-

ded in an interposer and microfluidic cooling for heat removal from the bottom and top,

respectively, of a 3D stack. We use a similar approach for cooling of the 3D SoC+ stack.

We model a microfluidic µ-cooler on the top substrate (above tier 1) with a heat trans-

fer coefficient of 3.33×105 W/m2-K (heff,up). For the bottom surface, BEOL-embedded

microchannels were modeled for microfluidic cooling. For a first order estimation of the ef-

fective heat transfer coefficient under the stack (heff,bot), it was assumed that the heat-sink

thermal resistance scales linearly with respect to the available heat-sink volume. Based

on the assumed ratio of volumes of the two heat-sinks (top and bottom), the heff,bot was

estimated to be 3.11×103 W/m2-K.

5.2.3 Impact of Design Parameters: Steady State Evaluation

In this subsection, we focus on thermal evaluation of back-end chiplet integration as a

function of various design parameters. In particular, we explore embedded tier power den-

sities, embedded tier thickness, and inter-tier BEOL thickness as they are some of the most
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Figure 5.2: (a) Application Processor (AP) tier and (b) memory tier maximum junction
temperatures as a function of chiplet 7 (embedded tier) power density

relevant factors from a thermal standpoint. We perform steady-state analyses with static

uniform power dissipation on each tier and all chiplets. Additionally, to study the extent of

inter-tier thermal coupling, we perform transient analysis with a processor-like simulated

activity factor on tier 1. Through these analyses, the limits and challenges of dense 3D

integration can be better understood.

Maximum Power Density Limits for Embedded Dice

Chip power densities can vary drastically based on function, technology node, and de-

vice technology. Heterogeneity combined with close proximity and stacking can result in

high-power densities. Thus, it is important to study the limits of power densities for 3D

integration as a function of cooling approach.

To investigate the limits of embedded tier power densities, we make the following as-

sumptions. All embedded tier chips are 0.075 cm2 in area. The AP tier, memory tier, and

embedded tier chiplets are assumed to have power densities of 100 W/cm2, 5 W/cm2, and

50 W/cm2, respectively. The power density of one of the embedded tier chiplets (Chiplet

7) was varied from 5 to 500 W/cm2, and the power densities of other chiplets were kept

constant. All other design parameters are listed in Table 5.1 and Table 5.2 unless otherwise

explicitly specified.

The results for processor and memory tier junction temperature variation are shown

in Figure 5.2 (a) and (b). The rise in maximum base silicon (tier 1) junction tempera-
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Figure 5.3: Impact of embedded tier thickness scaling for thickness of (a) 1µm and (b)
50µm

ture (Tj,max,AP ) (from lowest to highest embedded tier power density) for air-cooling and

for DSC is 63.86 °C and 17.06 °C, respectively. The same values for tier 2 (monolithic

memory) and embedded tier (chiplet 7) were 83.66 °C, 36.33 °C, and 104.96 °C, 55.37

°C, respectively. The following two observations were made: First, the rise in Tj,max and

Tj,min were highest for the embedded tier in both air-cooling and DSC cases. This can

be explained by: (a) the junction-to-heat-sink thermal resistance in the dominant heat re-

moval path (upward) is highest for the embedded tier 3 in both cooling scenarios, and (b)

the heff,bot is two orders (air-cooling) and an order (DSC) of magnitudes lower than heff,up

(i.e. heat removal path via tier 1 (base tier) silicon). Thus, it is important to note that this

result is inherent to the assumptions in the chapter and can change as a function of cooling

architecture. This implies the need for a lower thermally resistive path closer to the em-

bedded tier in the stack, since with the low thermal conductivity of the BEOL, spreading is

minimal. This will be a greater concern as the number of embedded tiers increase.

Second, with the use of DSC, tier temperatures across all dice were observed to be be-

low the critical limit of 105 °C (limit from [151]). Assuming this is the largest tolerated

junction temperature, the maximum embedded chiplet power density using DSC can be

higher than 500 W/cm2 for chiplet 7 with other five chiplets at 50 W/cm2. These observa-

tions imply that such a dense and heterogeneous scheme is thermally viable for high-power

densities at the cost of cooling design and integration complexity.
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Figure 5.4: Impact of inter-tier BEOL thickness (BEOL between tier 2 and embedded tier)
for thickness of (a) 1µm and (b) 10µm

Embedded Tier Thickness

The embedded tier thickness is crucial for heat spreading and a thicker tier can reduce

localized hot-spot temperatures [148], especially with high power density chips in a 3D

stack. Figure 5.3 (a) and (b) show the impact of embedded tier thickness variation on tier

Tj,max as the power density of embedded chiplet 7 is varied from 5 W/cm2 to 500 W/cm2.

We consider thickness values of (a) 1 µm and (b) 50 µm for chiplets in the embedded

tier. Going from 1 µm to 50 µm at 500 W/cm2, the Tj,max for each tier in both the air

cooled and DSC cases does not change significantly, as expected (2.61°C, 3.76°C, 2.98°C

with air-cooled and 0.55°C, 0.99°C, -0.25°C with DSC for tier 1, tier 2, and tier 3 (chiplet

7), respectively). However, the within-tier temperature variation is relatively higher. For

instance, the intra-tier temperature difference (Tj,max – Tj,min) for the embedded tier in

the air cooled case changes from 68.47°C to 55.6°C at 500 W/cm2 as the embedded tier

thickness is changed from 1 µm to 50 µm. The same difference changes from 9.08 °C

to 8.08 °C at 5 W/cm2. The corresponding values with the use of DSC are 41.67 °C to

35.04°C (500 W/cm2) and 0.36 °C to 0.31 °C (5 W/cm2). This implies that spreading in the

embedded tier becomes significantly important at higher power densities. In conclusion, the

intra-tier temperature spread, can be mitigated with embedded cooling, and this spread can

be reduced (albeit minimally) with a thicker embedded dice. But based on our assumptions

in this chapter, there does not appear to be a motivation for thick embedded chiplets.
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Impact of Inter-tier BEOL Thickness

Based on the extent of required inter-tier required connectivity, for instance between the

RRAM and an embedded chiplet, the number of metal layers in the BEOL may change. A

higher number of metal layers would increase the BEOL thickness. An increase in inter-

tier BEOL thickness effectively increases thermal resistance in the stack due to the addition

of low thermal conductivity material [152, 153]. Therefore, we investigate the impact of

BEOL thickness between tier 2 and the embedded tier on the Tj,max of the three tiers.

Figure 5.4 (a) and (b) show the extent of variation in Tj,max for AP, memory and em-

bedded tiers as the power density of embedded chiplet 7 and the BEOL thickness between

tier 2 and embedded tier were varied. The following two observations were made. First,

(a) Air-cooling (b) Dual-sided cooling

(c) Cooling Comparison

Figure 5.5: Thermal profile (Tj,max) of AP, memory, and embedded tier with (a) air-cooling
and (b) dual-sided cooling (BEOL thickness is 10 µm). (c) Tj,max comparison for air,
single-sided, and dual-sided cooling. (all results with total power = 162W).
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in both cooling cases, as the BEOL thickness is increased from 1µm to 10µm, the maxi-

mum tier junction temperatures for the AP and memory tiers reduced marginally (reduced

by 0.51°C and 0.61°C for air cooling and by 0.38°C and 0.76°C for DSC). However, as

expected, the temperatures increased for all chiplets in the embedded tier (air cooling: in-

creased by 26.8°C for chiplet 7 and 1.9 °C (average) for all other embedded chiplets; DSC:

increased by 25.2 °C for chiplet 7 and 2.4 °C (average) for all other embedded chiplets).

This can be explained by the increased BEOL thickness between tier 2 and embedded tier

contributing a high thermal resistance. Figure 5.5 (a) and (b) show thermal profiles (Tj,max)

of each tier for air cooling and DSC, respectively, and (c) shows (Tj,max) comparison for

air, single-sided liquid, and dual-sided liquid cooling.

Dielectric Thermal Conductivity Variation

The thermal conductivity of dielectric material was varied: 1) for all SoC+ tiers, and 2) for

just tier 3. Figure 5.6(a,b) and Figure 5.6(c,d) depict the variation in steady state (Tj,max)

as the thermal conductivity of dielectric is varied from 1 W/m-K (air, low capacitance

air-gap interconnects [154]) to 3320 W/m-K (diamond). With an increase in dielectric

thermal conductivity for all tiers, the inter-tier temperature difference between tier 1 and

tier 3 (∆Tj,max = Tj,max,tier1 - Tj,max,tier3) decreased from 52.3oC to 1.2oC (air-cooling) and

from 18.4oC to 0.6oC (DSC) (Figure 5.6(a,b)). Furthermore, with an increase in thermal

conductivity of the dielectric surrounding tier 3, the Tj,max drop for tiers 1, 2, and 3 was

11.3oC, 15.3oC, and 25.5oC, respectively, with air-cooling, and 2.6oC, 5.7oC, and 10.4oC

for DSC (Figure 5.6(c,d)). This ≈60-70% lower reduction for DSC can be explained by

the initial lower absolute temperatures compared to air-cooling. The observations are two-

fold. First, dielectric materials with higher heat spreading capability might be needed when

inter-tier temperature difference (∆Tj,max) in 3D tiers needs to be minimized. Second,

thermal challenges in 3D ICs might require additional conductive and convective solutions

such as heat-sinking from multiple sides and, potentially, advanced backend heat spreading
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using higher thermal conductivity dielectric materials. This suggests that apart from early

thermal analysis and thermal-electrical co-design, thermal challenges in 3D ICs will also

require advance process solutions for heat-spreading.

5.2.4 Transient Evaluation

The transient thermal coupling between all 3D SoC+ tiers and the chiplets within the em-

bedded tier depend on the transient activity of the active tiers and the cooling scheme used.

To study the extent of thermal coupling in the 3D SoC+ configuration, in the presence of

air and dual-sided cooling, the following transient-state analysis is performed. The AP tier

(a) dielectric k all tiers air (b) dielectric k all tiers DSC

(c) dielectric k embedded tier air (d) dielectric k embedded tier DSC

Figure 5.6: Maximum junction temperatures as a function of varying dielectric thermal
conductivity in: 1) all tiers with (a) air and (b) dual-sided cooling (DSC) and 2) just em-
bedded tier with (c) air and (d) DSC
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junction temperatures: extent of inter-tier thermal coupling

power map emulates a processor workload with a power map shown in Figure 5.7a with

an activity factor ranging between 0.01-0.80 [148]. The memory tier is assumed to have

uniform power density of 5 W/cm2, and the power densities for embedded tier chiplets are

assumed to be 50 W/cm2 (chiplets 3, 5, and 7) and 5 W/cm2 (chiplets 4, 6, and 8).

We estimate inter-tier thermal coupling using the following method. The simulation
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was run for a 10 second duration with a 10ms time step. For each two consecutive time steps

(for e.g. from t=0sec to t=0.01sec and so forth), we calculate the variation in maximum

junction temperatures (Tj,max,t+0.01s - Tj,max,t) for each tier. With the presence of inter-tier

coupling, a finite variation in AP tier maximum junction temperature (∆Tj,max,AP ) should

lead to a variation in a neighbouring tier’s maximum junction temperature (∆Tj,max,tier).

We quantify thermal coupling as the average (over 10sec) ratio of ∆Tj,max,tier and ∆Tj,max,AP

between every two consecutive time steps, which can be represented as:

Coupling = avg{(Tj,max,t+0.01s − Tj,max,t)tier
(Tj,max,t+0.01s − Tj,max,t)AP

} (5.1)

Figure 5.7 (b) depicts the maximum junction temperatures of each tier. Without the

presence of inter-tier thermal coupling, the junction temperatures of the monolithic mem-

ory and and embedded tiers should be constant and coupling defined by equation (Equa-

tion 5.1) would be 0. However, it can be seen from Figure 5.7 (b) that a strong inter-tier

coupling exists. The thermal coupling from AP tier to the memory tier and tier 3 (chip 7),

respectively, were estimated as 0.99 and 0.85 for air-cooling and 0.99 and 0.63 for DSC.

This implies that with an efficient cooling solution, the inter-tier thermal coupling can be

reduced. Furthermore, with the coupling estimations, it can be inferred that proximity of a

heat-sink to an active tier affects both the tier’s thermal coupling from neighbouring active

tiers and its absolute junction temperature. The embedded tier’s proximity to the bottom

embedded cooling (DSC), and a higher thermal resistance between the embedded and AP

tiers, enables better isolation, from the AP tier, for the embedded tier than for the memory

tier.

5.3 Conclusion

This chapter presents a back-end-embedded chiplet integration scheme for heterogeneous

3D integration, which is envisioned to combine the low EPB and high BWD benefits of
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monolithic 3D ICs with the integration flexibility of TSV-based 3D integration. A ther-

mal study focusing on 3D SoC+ is presented to identify the thermal limits and challenges

in such a scheme. For steady state operation of primary and embedded tiers, the impact

of design parameters such as (a) embedded tier power density, (b) embedded tier thick-

ness, and (c) BEOL thickness on maximum tier junction temperatures were evaluated with

air-cooling and dual-sided cooling (DSC). Moreover, transient analysis was performed to

estimate thermal coupling from the base silicon layer (tier 1) to the embedded tier. It was

observed that the heat-sink proximity to an active tier affects the thermal coupling, with up

to 20% reduction observed with DSC.
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CHAPTER 6

DESIGN OPTIMIZATION STRATEGIES FOR POWER DELIVERY NETWORK

IN POLYLITHIC 3-D INTEGRATION

6.1 Introduction

As described in the previous chapter, the technological push towards 3D heterogeneous in-

tegration such as TSV based 3D ICs is driven by the need for higher bandwidth and lower

delay in chip-to-chip signal interconnections. To bridge the performance gap in connectiv-

ity and heterogeneity between monolithic 3D and TSV-based die stacking, a back-end-of-

line (BEOL)-embedded integration scheme is proposed in this work where thinned dice are

envisioned to be integrated close to the back-end using fine pitch interconnects (polylithic

3D integration). This can alleviate electrical signaling performance degradation due to

long wire lengths and large pad sizes leading to improved EPB and lower chip-to-chip

delay. Such a technology can potentially combine the benefits of current heterogeneous

ICs (e.g. lower costs, technology node flexibility, higher yield, etc.) with the performance

superiority of monolithic 3D ICs. However, potential challenges from a power delivery

perspective can impact device performance.

We present design optimization strategies for power delivery networks (PDN) in polylithic

3-D integration. The proposed 3D polylithic architecture represents a densely integrated

system divided into multiple device tiers where custom chiplets, such as power manage-

ment IP, I/O drivers, and memory are embedded into the back-end of a base tier with ex-

treme efficient signaling and large bandwidth density. The scope of this work is a detailed

design space exploration of the power supply noise effects in polylithic 3-D architectures.

We propose three polylithic PDN designs and benchmark their IR-drop as a function of tier

power, number of embedded chiplets, hot-spot location, and TSV diameter and distribution
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to provide design limitations and insights.

6.2 PDN considerations for 3D Integration

Among various heterogeneous integration (HI) architectures, such as multi-chip modules

(MCM), 2.5D, and 3D, 3D-HI can provide higher compute density and signaling energy-

per-bit through a reduced footprint and interconnection length, respectively, compared to

MCM and 2.5D [68]. A growing need for higher logic-memory bandwidth and lower chip-

to-chip signal interconnection delay have led to a technological push towards 3D-HI such

as through-silicon via (TSV)-based 3D integrated circuits (ICs) [68, 69, 70]. Although 3D-

HI can enable dense memory-logic integration needed for state-of-the-art CIM hardware

accelerators, there are power delivery challenges with 3D-HI for CIM.

A factor that poses a challenge in power delivery design for edge intelligent hardware is

the current trend of increasing power and power density in recent CIM and hardware accel-

erators, as shown earlier in Figure 4.1. Increasing DNN model size and workload complex-

ity can lead to larger die sizes due to a higher demand for on-chip resources such as memory

arrays, ADCs, etc. When it comes to low-power edge applications, the primary motiva-

tions are to improve energy efficiency (tera-operations-per-sec-per-Watt or TOPS/W) and

compute efficiency (tera-operations-per-sec-per-square mm or TOPS/mm2). This can be

achieved through device scaling and reducing the overall hardware form-factor. As a re-

sult, the area occupied by an edge intelligent hardware and voltage regulators will need to

shrink. A push for thinner devices usually corresponds to reduction in height of the die and

the power delivery components such as interconnects, capacitors and inductors. Addition-

ally, recent work has demonstrated performing vector-matrix-multiplication in parallel on

multiple CIM cores, which introduces certain non-idealities such as core-to-core variation

of IR-drop and supply voltage instability [76]. All these trends introduce multiple unique

challenges in designing a robust power delivery network for CIM.

3D-HI brings additional challenges to computational accuracy. These include steady-
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Monolithic 2D PDN

Figure 6.1: Conventional PDN cross-section for a monolithic 2D design
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Figure 6.2: Proposed PDN cross-section for Polylithic 3D: BEOL-embedded chiplet inte-
gration

state PSN due to IR-drop on additional interconnects (resistive on-die PDN, TSVs, I/O

bumps, etc) and inter-tier supply voltage variation. These effects lead to variations in the

analog outputs of the memory arrays and the reference voltages in the ADCs, contribut-

ing to sensing errors in the ADCs. These errors can significantly impact CIM inference

accuracy.

In the next few sections, we study some of these challenges and provide design opti-

mization strategies for Polylithic 3D integration schemes.

6.3 Polylithic 3D PDN Design

Figure 6.1 shows the PDN cross-section of a conventional monolithic 2-D IC. Figure 6.2

illustrates the cross-section representation of a polylithic 3D IC with two embedded dice

under a primary top die.

We consider three cases for the polylithic 3D PDN. They are:

1. Case 1A: Polylithic 3D integration with BEOL vias below embedded tier connecting
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(a) Case 1A: Polylithic 3D without TSV, with BEOL vias below embedded tier

(b) Case 1B: Polylithic 3D only TSVs, no BEOL vias below embedded tier

(c) Case 1C: Polylithic 3D with TSVs and BEOL vias below embedded tier

Figure 6.3: (a) Case 1A: Polylithic 3D without TSV, with BEOL vias below embedded tier,
(b) Case 1B: Polylithic 3D only TSVs, no BEOL vias below embedded tier, and (c) Case
1C: Polylithic 3D with TSVs and BEOL vias below embedded tier
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Figure 6.4: PDN modeling hierarchy: (a) Lumped model of the board-level PDN, dis-
tributed model of the package-level PDN, and the distributed model of the on-chip PDNs
in an n-tier 3D stack including the TSVs and microbumps. (b) Flow diagram of the 3D
PDN analysis showing different steps of the framework.

the embedded die to microbumps and no direct connections between embedded tier

and top-tier. As shown in Figure 6.3a, this case includes one primary (top) tier and

one embedded (bottom) tier. The top and bottom-tier PDNs are not assumed to be

shared and thus are not connected with TSVs.

2. Case 1B: Polylithic 3D with TSVs connecting the top and bottom-tier and no BEOL

vias connecting the embedded tier to microbumps. As seen in Figure 6.3b, this case

also includes one primary (top) tier and one embedded (bottom) tier where the top
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Table 6.1: Experimental Setup

PDN Model parameters
Parameter Value

On-die metal resistivity (ohm-m) 1.8e-8
On-die global wire Pitch/Width/Thickness (um) 39.5/17.5/7

On-die intermediate wire P/W/T (nm) 560/280/506
On-die local wire P/W/T (nm) 160/80/144

On-die decap density (nF/mm2) 335
µ-bumps pitch/R/L (um/m-ohm/pH) 40/30.9/11.1
C4 bump pitch/R/L (um/m-ohm/pH) 200/14.3/11

Package effective decap R/L/C (m-ohm/pH/uF) 541.5/220.7/52
Package resistivity/inductance

(m-ohm/mm/ pH/mm) 1.2/24
BGA pitch/R/L (um/m-ohm/pH) 500/38/46

TSV R/L (m-ohm/pH) 54.2/77.78
PCB R/L (u-phm/pH) 166/21

PCB decap R/L/C (u-phm/nH/uF) 166/19.54/240
Die Size (mm2) Top: 10mm × 10mm,

Bottom/Embedded: 5mm × 5mm
Power (W) Top: 1, 5, 10, 25

Bottom/Embedded: 1, 5, 25, 50
TSV Diameter (Pitch) (µm) 1 (2)

Bottom/embedded tier substrate thickness (TSV Height) (µm) 10 (TSV-stacked 3D baseline)
0.5 (embedded tier cases 1A, 1B, 1C)

and bottom-tier PDNs are assumed to be shared and are connected only with TSVs,

i.e. the bottom-tier is not directly supplied power through a BEOL and microbumps

underneath.

3. Case 1C: Polylithic 3D with TSVs connecting the embedded tier and top-tier and

BEOL vias connecting the embedded tier to microbumps. As seen in Figure 6.3c,

this case also includes one primary (top) tier and one embedded (bottom) tier where

the top and bottom-tier PDNs are assumed to be shared and are connected with TSVs,

and the bottom-tier is also directly supplied power through a BEOL and microbumps

underneath.

6.4 Experimental Setup: 3D PDN modeling methodology

Figure 6.4a shows the PDN structure of an n-tier 3D stack. Figure 6.4b presents the flow

for both steady-state and transient analyses and this is an updated version of the flow pre-
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sented in [114]. The key contributions in this updated flow include support for model-

ing of emerging 3-D packaging architectures such as TSV and microbump-based 3-D and

polylithic 3-D. We implement a distributed package-level PDN model, unlike previous ef-

forts that assume a lumped package model, to reflect the spreading effects of current in the

package and the coupling between different P/G bumps, especially when dice share pack-

age PDN planes. The flow begins with the generation of the RLC network models of the

board, package, and the on-die PDNs. These models are subsequently combined to solve

for nodal voltages and branch currents. Although we only present steady-state (IR-drop)

analysis in this work, this flow can support transient-state analysis as well.

An ideal voltage regulator module (VRM) is assumed for board-level PDN and a lumped

R/L network is used to model board-level current spreading. The equivalent series resis-

tance and equivalent series inductance of board-level decoupling capacitors are included in

the model. The package power/ground planes are modeled as two layers with the bottom

layer connected to the motherboard by ball grid arrays and the top layer connected to an

on-die PDN through C4 bumps. Each node in the two layers is connected to six adjacent

nodes through an R-L pair, representing either package traces or inter-layer vias. Die-side

decaps are assumed to be connected to the top package PDN layer.

The on-die PDN consists of several metal layers where the P/G wires are parallel to

each other within a layer, and adjacent layers are orthogonal to each other. To better reflect

the interleaved nature of the on-die PDN and capture the effect of on-die vias, the on-

die PDN is modeled as a two-layer structure. The metal wires on each on-die PDN are

typically uniformly distributed, but if the actual layout is non-uniform, our flow calculates

the effective wire pitch and via density to reorganize the PDN layout [114]. For each

on-die layer, we map a fine-granularity PDN layout to coarse mesh grids at a C4 bump

granularity. The equivalent parallel resistance is calculated, for each coarse grid containing

multiple vias and metal wires, and assigned using models described in [115]. All coarse

PDN layers with x-axis and y-axis metal wires are mapped onto the top and bottom layers,
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respectively. Rvia is the effective resistance of vias between adjacent metal layers, and

RTSV is the resistance of TSVs between multiple 3D dice. Although this framework can be

used to model both steady-state and transient PSN, in this work we focus on steady-state

analyses.

6.5 Results
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Figure 6.5: Top-tier IR-drop for polylithic 3D (cases 1A, 1B, 1C in orange, green, purple,
respectively) as a function of the top-tier power. Bottom-tier power=25 W.

Benchmarking Polylithic 3D IR-drop

First we benchmark the IR-drop for polylithic 3D integration as a function of the top-

tier power. The considered three cases are 1A, 1B, and 1C as described in section 6.3.

Figure 6.5 illustrates the results for this study. The y-axis plots the maximum IR-drop

for the top-tier, and the x-axis shows the considered top-tier powers (1 W, 5 W, 10 W).

The bottom tier power was fixed at 25 W. Cases 1A and 1C show lower overall IR-drop

compared to case 1B at 1 W top-tier power. This is because in case 1B, the embedded

tier is only supplied power through TSVs connecting to the top-tier and not by the BEOL
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and bumps below it. This leads to a longer power delivery path and overall path resistance

compared to 1A and 1C where the embedded die are supplied power directly from the

bumps and BEOL. Additionally, the maximum IR-drop for the top-tier increases with an

increase in top-tier power.

Top tier IR-drop Bottom tier IR-Drop

1A: no TSV-with BEOL

(a)

Top tier IR-drop Bottom tier IR-Drop

1B: with TSV-no BEOL

TSV height: 0.5um

(b)

Top tier IR-drop Bottom tier IR-Drop
Baseline: TSV-based 3-D

TSV height: 10um

(c)

Figure 6.6: Maximum IR-drop for top and bottom-tiers in (a) Case 1A, (b) Case 1B, and
(c) the baseline case.
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Design Space Exploration: Tier Power

We studied IR-drop sensitivity of each tier with respect to the power dissipation of each tier

to establish worst case limits and to establish optimal power combinations for each case.

Figure 6.6 shows the results for this analysis. Figure 6.6a, Figure 6.6b, and Figure 6.6c

show the maximum IR-drop for top and bottom-tiers in Case 1A, Case 1B, and the baseline

case, respectively. Figure 6.6c (baseline) shows that the top-tier noise is sensitive to both

the top and bottom-tier powers, and the sensitivity is higher towards the top-tier power.

This is because power to the top-tier is delivered through TSVs that are highly resistive due

to higher silicon thickness in the baseline case compared to cases 1A and 1B. Figure 6.6b

illustrates that both the top and bottom-tier noise values are more sensitive to the bottom-

tier power than to the top-tier power for case 1B. This is because the on-die switching

loads do not have direct access to the direct PDN below the die overlap region. This leads

to a significantly higher path resistance to deliver power to the bottom-tier, with tier 1 vias

(shown in Figure 6.3b around the embedded tier) contributing highest to the path resistance.

Figure 6.6a characterizes the power sensitivity of case 1A, and since in this case the two

PDNs for top and bottom-tiers are not shared and effectively decoupled, we expect each

tier’s noise to be more sensitive to its own respective powers. The observations match

our expectations as we learn that the top-tier noise is more sensitive to the top-tier power

compared to the bottom-tier power, and vice versa. However, in the design space of powers

considered in this study, the maximum noise for top-tier case 1A (top-tier power = 25W,

bottom-tier power = 100W) was ≈23.2 lower than the baseline (top-tier power = 10W,

bottom-tier power = 50W) and ≈20.5% lower than case 1B (top-tier power = 10W, bottom-

tier power = 50W).

Chipletization of bottom-tier

Dividing the embedded tier into multiple dice and spacing the die out can help alleviate

the worst case IR-drop. This is because the top-tier gets direct access to BEOL vias and
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(a)

(b)

Figure 6.7: Chipletization of embedded tier for case (a) 1A and (b) 1B.
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µbumps in the areas between the embedded dice. The results of this study are shown in

Figure 6.7. Figure 6.7a shows the results for case 1A and Figure 6.7b for case 1B. We

observe that for top-tier power = 10 W and bottom-tier power = 50W, going from 1 to 6

embedded chiplets, both top and bottom-tier noise for case 1B reduce from 73.3% of VDD

to 23% of VDD (≈50% reduction). Similarly, the top-tier noise for case 1A reduces from

20.7% of VDD to 5.9% of VDD (≈14.8% reduction), and remains effectively unchanged

(≈4% of VDD) for the bottom-tier. The reason for no change in case 1B bottom-tier is that

the top and bottom PDNs are not shared. Thus splitting the bottom-tier and spacing out

the dice does not impact the PDN path resitance for the embedded dice, however, it does

reduce the path resistance for the top-tier.

The best case top-tier IR-drop for case 1B (i.e. with 6 embedded chiplets) is higher

(23%) than the worst case top-tier IR-drop for case 1A (20.7%). Additionally, there is

marginal reduction in top-tier noise for case 1A going from 4 to 6 embedded chiplets.

Thus, this experiment allows us to optimize the number of embedded chiplets, which were

4 for case 1A and 6 for case 1B.

Impact of hotspot

Hotspot power can have significant impact on the noise characteristics of a 3D-stacked IC.

For this experiment, a Hotspot of size 1mm × 1mm was modeled on the top-tier (case

1A) with a power density of 100 W/cm2. The bottom-tier power was set to 50 W (200

W/cm2) while the top-tier power was set to 2 W (1 W hotspot + 1 W background). All

other parameters for the top and bottom-tier dimensions were the same as those mentioned

in Table 6.1. When shifting the hotspot from the center to a corner in the top-tier (as shown

in Figure 6.8a), the top-tier IR-drop reduces from 63.2% to 4.9% (≈58% reduction), and

the bottom-tier IR-drop remains effectively unchanged (Figure 6.8b). This demonstrates

that hotspot floor-planning can be an effective strategy for PSN management.
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(a)

(b)

Figure 6.8: Impact of hotspot location relative to the bottom-tier. (a) Hotspot locations
considered, and (b) maximum IR-drop as a function of hotspot location.

6.6 Related Work

Related work from literature ([133], [100], [155], [156]) are summarized in Figure 6.9.
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Attribute H. Lee et al. [133]
Chen et al. [100], 

Cheng et al. [155]
A. Elsherbini et al. [156] This work

Schematic

Interconnection method μ-bump and TSVs
Hybrid bonding D2W, W2W and 

TSVs
Hybrid bonding D2W, W2W and TSVs BEOL vias and TSVs

Targeted I/O pitch (μm) 35 0.9 3 – 9 Goal: 0.5 – 5

I/O Density (count/mm2) 1⨉ 1512⨉ 15⨉ – 136⨉ 49⨉ – 4900⨉

Power Delivery Attributes 

TSV can achieve lower IR-

drop vs BEOL via. 

Stacking → extra IR-drop 

through TSV

TSV+TDV for lower IR-drop. IR-

drop reduced from 2.3% to 1.2% 

using TSV array

High aspect ratio TDVs for lower parasitics 

and IR-drop vs TSVs

Maximum IR-drop can be 

lowered up to 3.3% vs 

12.6% for baseline

Die to Die Link Power 

(energy/bit) (A.U.)
1⨉ ~ 0.05⨉ ~ 0.05⨉ – 0.1⨉ ~ 0.02⨉ – 0.67⨉

Figure 6.9: A summary of the salient features of related work in literature.
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6.7 Conclusion

This work presents design optimization strategies for power delivery network (PDN) in

polylithic 3-D integration. The proposed 3D polylithic architecture represents a densely

integrated system divided into multiple device tiers where custom chiplets, such as power

management IP, I/O drivers, and memory are embedded into the back-end of a base tier

with extreme efficient signaling and large bandwidth density. We present a detailed design

space exploration of the power supply noise effects in polylithic 3-D and reconstituted 3-D

architectures. We propose three polylithic PDN designs and benchmark their IR drop as a

function of tier power, number of embedded chiplets, hot-spot location, and TSV diameter

and distribution to provide design limitations and insights.
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CHAPTER 7

SUMMARY AND FUTURE WORK

This thesis aims to demonstrate methodologies for modeling and optimization of 2.5-D and

3-D integration architectures for compute-in-memory applications. The following sections

highlight the contributions presented in this thesis and potential future directions.

7.1 Summary of the Work

The following research projects were completed and presented in the previous chapters:

• Chapter 2 demonstrated that including a PDN in the bridge-chip can provide signif-

icant reduction in DC-IR-drop, Ldi/dt noise, and high-frequency ripple compared to

the baseline case of no PDN in the bridge-chip. Key takeaways are that 2.5-D designs

with both smaller-width and larger-width bridge-chips can benefit from decoupling

capacitors placed closer to the on-die PDN and that there is a trade-off between the

bridge-chip size and MIM capacitor density. We quantify the impact of bridge-chip

size and decoupling capacitor density in the bridge-chip on the maximum transient

noise. Through a bridge-chip PDN design space exploration, insights are provided

which can be useful for 2.5-D design convergence.

• Chapter 3 presented a comprehensive design-space exploration of power delivery net-

work design for 3D heterogeneously integrated CIM hardware. A device-integration-

application evaluation methodology is proposed to facilitate early design-space ex-

ploration and trade-offs between power delivery design parameters and CIM per-

formance metrics. By co-optimizing across design hierarchies from packaging to

circuits and devices, we present an areal-TSV 3D CIM design and compare it to a

localized-TSV 3D implementation. For our assumed 3D CIM hardware, an areal
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distribution of through-silicon vias (TSV) and microbumps, and a PSN-aware SAR-

ADC fine-tuning achieves a 90% inference accuracy compared to 47% with a unop-

timized 3D design at iso-area and iso-power. The insights provided could be useful

for design convergence and performance modeling for edge intelligent 3D hardware.

• Chapter 4 presented a device-integration-application evaluation methodology that is

used to quantify the impact of integration architectures on RRAM reliability for CIM

applications. Two heterogeneous 3D logic-memory CIM accelerator designs - TSV-

based 3D and Monolithic 3D-based integration of logic (7nm CMOS) and memory

(22nm RRAM) tiers - were benchmarked against monolithic 2D and balanced inte-

gration design parameters were reported for maximized 3D CIM inference accuracy.

For our assumed device, integration and application parameters, a 3-tier configura-

tion provides a balanced design to achieve optimal system performance. The PP

schemes are preferred for high-performance systems, with high operating tempera-

ture being a potential trade-off that can be improved with advanced thermal manage-

ment and cooling architectures.

• Chapter 5 presented a back-end-embedded chiplet integration scheme for heteroge-

neous 3D integration, which is envisioned to combine the low EPB and high BWD

benefits of monolithic 3D ICs with the integration flexibility of TSV-based 3D inte-

gration. A thermal study focusing on 3D SoC+ is presented to identify the thermal

limits and challenges in such a scheme. For steady state operation of primary and em-

bedded tiers, the impact of design parameters such as (a) embedded tier power den-

sity, (b) embedded tier thickness, and (c) BEOL thickness on maximum tier junction

temperatures were evaluated with air-cooling and dual-sided cooling (DSC). More-

over, transient analysis was performed to estimate thermal coupling from the base

silicon layer (tier 1) to the embedded tier. It was observed that the heat-sink proxim-

ity to an active tier affects the thermal coupling, with up to 20% reduction observed
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with DSC.

• Chapter 6 presented design optimization strategies for power delivery network (PDN)

in polylithic 3-D integration. The proposed 3D polylithic architecture represents a

densely integrated system divided into multiple device tiers where custom chiplets,

such as power management IP, I/O drivers, and memory are embedded into the back-

end of a base tier with extreme efficient signaling and large bandwidth density. We

present a detailed design space exploration of the power supply noise effects in

polylithic 3-D and reconstituted 3-D architectures. We propose three polylithic PDN

designs and benchmark their IR drop as a function of tier power, number of embed-

ded chiplets, hot-spot location, and TSV diameter and distribution to provide design

limitations and insights.

7.2 Future Work

7.2.1 Evaluate Compute In-Memory (CIM) Inference and Training Accuracy with Multi-level

RRAM Device Tier

Figure 7.1a shows three types of RRAM and their corresponding characteristics compari-

son [157]. Typical retention specification for non-volatile memory (NVM) devices is more

than 10 years at 85 °C, and this has been met by binary RRAM devices. However, this

requirement can become challenging to meet at elevated temperatures when NVM devices

are integrated in 3D IC form factors with increased volumetric power. PSN management

and thermal stability are of higher importance in multi-level switching to prevent the over-

lapping between adjacent low resistance state (LRS) levels [158] (Figure 7.1b).

Future directions could include a full system PDN and thermal design parameter anal-

ysis of polylithic 3D utilizing in-house developed and commercial frameworks. Another

direction to explore could be a PDN and thermal co-simulation with multi-level RRAM

BEOL device model to benchmark different 3D integration technologies and PSN manage-
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(a) (b)

Figure 7.1: Three types of RRAM and the corresponding characteristics comparison. (a)
Filamentary analog RRAM with multiple-weak-filaments; (b) conventional strong-filament
based RRAM; (c) non-filamentary RRAM; (d) comparison of five specifications [157]. (e)
I-V switching characteristics of a binary RRAM [159]

ment technologies with respect to the temporal degradation in CIM accelerator inference

and training accuracy. A comprehensive reliability study of CIM accuracy change with de-

sign parameters such as increasing tier count, accurate power profile of BEOL-embedded

3D polylithic chiplets (I/O PHYs, RF-front end, etc.) is another possible vector for further

work.

7.2.2 Extended PDN Benchmarking for Polylithic 3D Integration

The continued scaling of logic devices so far has ensured an increase in device density

across generations of process nodes. However, on-chip Cu interconnects tend to scale

poorly compared to devices due to the increased resistance of on-chip wires with reducing

cross-sectional area [160]. The increase in wire and I/O resistance due to lower dimensions

can increase the steady-state IR-drop in integrated circuits at advanced nodes. Moreover,

with limitations in PPAC benefits from conventional device scaling, certain scaling boosters

such as backside power delivery using buried power rails have been proposed for More than

Moore integration.

Potential extensions of current work could include modeling chiplet-to-backend I/Os,

proposed to be fabricated using Co atomic layer deposition (ALD), to perform static and

dynamic power analyses for multi-tier polylithic 3-D and benchmark the static and dynamic

power drop against that of TSV-based 3D. Analyzing the design trade-offs of backside

power delivery for polylithic 3-D using buried power rails is another potential direction.
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PDN-thermal co-design for polylithic 3-D integration is another interesting direction to

explore.

7.2.3 Signal Channel Benchmarking for 3-D Heterogeneous Integration

As part of future work for benchmarking electrical performance of polylithic 3-D, die-to-

die signal channel analysis can be explored. We present some preliminary results where

repeater-based driver and receiver designs are used to model the digital signal channels

for heterogeneous integration architectures. We present the results of a TSV-based 3-D

design parameter simulation study and report the signaling latency, energy efficiency, and

maximum areal bandwidth density of a TSV-based 3-D integration platform. In addition,

we also report these metrics for polylithic 3-D and present preliminary results on the impact

of process technology and temperature.
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Figure 7.2: Illustration of digital signal channel for (a) TSV and microbump-based and (b)
polylithic and monolithic 3-D integration.

Table 7.1: Physical dimensions of each parameter of signaling models

Parameter Value
Technology Node ASU PTM 7nm

TSV diameter (µm) 1 - 5
TSV height (µm) 50 - 300

TSV dioxide thickness (µm) 0.25
Microbump diameter (µm) TSV diameter
Microbump height (µm) TSV height
Microbump pitch (µm) 2*TSV diameter

Pad diameter (µm) Microbump diameter*1.5
Pad height (µm) Microbump height/2

Link wire length (mm) 1
Link wire pitch/thickness/width (µm) 1.6/2/0.8

ESD capacitance (fF) 50
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Circuit models of digital signal channels in heterogeneous integration

The TSV-based 3-D and monolithic 3-D digital signal channels are illustrated in Figure 7.2a

and Figure 7.2b, respectively. The signal channels consists of input/output (I/O) drivers and

receivers, I/O pads, microbumps and chip-to-chip wires (TSVs [70, 98] or monolithic inter-

layer vias [161, 162]).

The equivalent circuit models for the TSV-based and polylithic 3-D signal links are

shown in Figure 7.3a and Figure 7.3b, respectively. The parasitics of the pads, microbumps

and wires are included in these models. Monolithic 3-D is assumed to not require and ESD

capacitances that are not included in the monolithic 3-D models. The vias models are based

on the compact models described in [163, 164, 165]. For TSV-based 3-D, an ESD capacitor

of 50 fF is added to both driver and receiver sides, and no ESD capacitance is assumed for

monolithic and polylithic 3-D. A pre-driver of 102 Ω is included at the input to the driver

and an output resistor of 1 MΩ is included as termination resistance at the receiver’s output

[166]. An optimal signal-to-ground (SG) TSV/microbump coupling case is considered.

The considered dimensions for I/Os and interconnects are summarized in Table 7.1.

TSV specifications are assumed so as to establish the extreme case designs that are possi-

ble based on literature and fabrication constraints. The wire specifications are based on the

dimensions of the top global wires from NCSU FreePDK 45 nm [167]. The wire routing

configuration is assumed to use a fan-in approach as demonstrated in [92, 168], therefore
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Figure 7.3: Digital signal channel circuit for (a) TSV and microbump-based and (b)
polylithic and monolithic 3-D integration.
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Figure 7.4: (a) Energy-per-bit, (b) Delay, (c) Bandwidth density, (d) TSV Oxide liner ca-
pacitance, and (e) Energy-delay product as a function of the TSV diameter and TSV height.

the wire pitch could be smaller than the microbump pitch. The models for parasitic estima-

tion of each parameter are assumed from [66]. Microbumps are assumed to be cylindrical

for a simplified design. Transceiver designs having multiple driver stages with a constant

fan-out of 4 between stages were chosen [163]. The minimum-sized inverter that drives

four identical inverters is tuned to achieve equal rise and fall times. The number of driver

stages ranges from 1 to 4 stages in all simulations, and energy-delay-product (EDP) was

used to optimize the number of driver stages [169]. We use a low-frequency digital signal

input of 200 MHz [166] as we anticipate the signal channels are used in applications similar

to Wide I/O spec [170].

TSV 3-D design parameter study

In this section, circuit models are developed in HSPICE netlists, and the 50%-to-50% prop-

agation delay and total energy of the signal channels are simulated for TSV and microbump-

based 3-D integration scenario. The device models are based on ASU PTM 7 nm HP library

[84]. The version of HSPICE is PrimeSim HSPICE U-2023.03-SP1, and the BSIM model

for 7 nm library is level 54 version 4.5.
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Based on the design parameter specifications, the maximum data rate per link (Fmax)

was simulated using 6 · τ (τ is latency and Fmax > 1 / (6 · τ ) ) settlement [86]. The

bandwidth per unit area (Gbps/mm2) (areal bandwidth density, BWD) is then calculated

using the following equation:

ArealBWD =
1

P 2
bump

· 1

(6 · τ)
(Gbps/mm2) (7.1)

where Pbump is the bump pitch with units of millimeter. We assume two rows of stag-

gered bumps, of which half are for signals and the rest are for ground [86, 97, 93].

As shown in Figure 7.4a, a 1.4× reduction in energy was observed going from 5µm to

1µm TSV diameter at 50µm TSV height. A 2.7× reduction going from 5µm to 1µm TSV

diameter at 300µm TSV height. A ≈2.6× reduction was oberved going from 300µm to

50µm TSV height @ 5µm TSV diameter.

As seen in Figure 7.4c, up to 43× improvement in bandwidth density (BWD) was

observed going from 5µm to 1µm TSV diameter at 300µm TSV height. A ≈2× BWD

improvement was observed going from 300µm to 50µm height at 5µm diameter due to

lower RC parasitics.

Polylithic 3-D design parameter study

In this section, we present preliminary results from a signaling design parameter study

for polylithic 3D integration as a function of via diameter, technology node, and junction

temperature.

• Impact of Via Diameter: First we looked at benchmarking the energy-per-bit (EPB)

and areal BWD as a function of via diameter. The results are summarized in Fig-

ure 7.5a. The figure shows that going from 0.5µm to 5µm via diameter the BWD for

polylithic 3D was estimated to be 600× higher compared to TSV 3-D. The primary

reasons are lower parasitic capacitance and due to the assumption that polylithic 3D
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TSV-3DPolylithic 3D

~30x

>600x

(a)

TSV-3DPolylithic 3D

~1.3x

~1.5x

~1.1x
~1.1x

(b)

40.9x

33.9x

(c)

3.2x 3.18x

(d)

Figure 7.5: Impact of design parameters on die-to-die signaling metrics: (a) Via Diameter,
(b) Technology Scaling. (c) Energy-per-bit and (d) Delay as a function of temperature.

might not require ESD capacitance that is not included in the polylithic 3-D model

(Figure 7.3b). This is similar to assumptions for monolithic 3D (without ESD), which

is approximated as polylithic 3D since interconnect parasitics for polylithic 3D are

expected to be in the range of BEOL-level parasitics.

• Impact of Technology Scaling: Next we look at the impact of technology scaling on

the signaling metrics. In terms of node to node gains, the EPB reduced by ≈1.3×

for TSV-3D and ≈1.5× for polylithic 3D, by swithcing from 14nm to 7nm. BWD in

both cases increased by ≈1.1× in both cases.

• Impact of Temperature: Next we looked at benchmarking the signaling figures of

merit for three integration architectures as a function of operating temperature. The

die-to-die delay and energy-per-bit for polylithic 3D was estimated to be on an av-

erage 3.2 × lower and more than 30 × lower, respectively, compared to TSV 3D.

The primary reasons are lower parasitic capacitance and with the assumption that

polylithic 3D might not require ESD capacitance.

These results are preliminary and as part of future work, the parasitic models can be

updated with measurement data to perform a detailed design space exploration. A summary

of various proposed die-to-die signaling interfaces and a few 3-D integration hardware

demonstration in literature is presented in Appendix A.
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APPENDIX A

LITERATURE SURVEY

A summary of the salient features of various proposed heterogeneous integration interfaces

in literature is presented in Figure A.1. A summary of 3-D integration demonstrations

in literature using TSV along with hybrid bonding [68] or microbump-based [98, 171]

stacking is presented in Figure A.2.
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Standard Source
Technology (2.5D/3D) 

(Electrical/Optical)

Bandwidth density 

(Linear/Areal)

Throughput / 

lane
Delay

PHY Energy / bit 

(pJ / bit)

Supply 

Voltage (V)

Advanced Interface 

Bus (AIB)
Intel Silicon Bridge (2.5D) (E) 504 Gbps/mm (L) Up to 2 Gbps < 5 ns 0.85

TeraPHY Intel, Ayar Labs Silicon Bridge (2.5D) (O) Up to 5.12 Tbps

Multi-Die I/O 

(MDIO)
Intel Silicon Bridge (2.5D) (E) 1600 Gbps/mm (L) Up to 5.4 Gbps 0.5 0.5

High Bandwidth 

Memory (HBM3)
JEDEC μ-bumps and TSV (3D) (E) 4.8 Gbps 0.37

XSR / USR Rambus / OIF (E) 112 Gbps

LIPINCON TSMC
Silicon Interposer (2.5D) 

(E)
536 Gbps/mm (L) Up to 8 Gbps < 14 ns 0.486 0.3

Bunch of Wires 

(BoW)
OCP / ODSA 2.5D (E) 1280 Gbps/mm (L) Up to 16 Gbps < 5 ns 0.7

Infinity Fabric AMD MCM (E) 101.6 Gbps < 9 ns 2

Bandwidth Engine Mosys (E)
Up to 10.3125 

Gbps
< 2.4 ns

Foveros Intel μ-bumps and TSV (3D) (E) 0.5 Gbps 0.2

AMBA CHI Arm
Hybrid Bonding and TSV 

(3D) (E)

2276 – 3413 

Gbps/mm2 (A)
Up to 2.4 Gbps 0.013 – 0.021 0.8 – 1

Figure A.1: A summary of the salient features of various proposed heterogeneous integration interfaces in literature.
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Attribute W2W Hybrid Bonding [68] μ-bumps (Foveros) [98] μ-bumps (ExaNoDe) [171]

Areal BWD (Gbps/mm2) 27304 -- 3000

EPB (fJ/bit) 21 150 --

Areal BWD/EPB (Gb/s)/(fJ/bit) 1300.19 -- --

I/O pitch (um) 5.76 36 20

IO/mm2 (calculated from paper data) 11376.67 771.60 2500

pin speed (Gb/s) 2.4 0.5 1.2

TSV dia (um) 5 9 10

TSV pitch (um) 74.12 15 20

[68] S. Sinha, IEDM, 2020

[98] D. Ingerly, IEDM, 2019

[171] D. Dutoit, IEDM, 2020

HWB

μ-bump

μ-bump
HWB

μ-bump

Figure A.2: A summary of the die-to-die metrics of various 3-D integration demonstrations.
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