Low-Loss Air-Isolated Through-Silicon Vias for Silicon Interposers

Hanju Oh, Student Member, IEEE, Paragkumar A. Thadesar, Member, IEEE, Gary S. May, Fellow, IEEE, and Muhannad S. Bakir, Senior Member, IEEE

Abstract—An air-isolated through-silicon via (TSV) technique is proposed to reduce radio-frequency (RF) losses in silicon interposers. A testbed containing air-isolated and conventional TSVs is fabricated and characterized from 10 MHz to 20 GHz with an L-2L de-embedding technique. The proposed air-isolated TSV technique yields 46.7% lower insertion loss compared to conventional TSVs at 20 GHz from 3-D full-wave simulations and measurements. Moreover, the impact of the air-isolation region width between TSVs on capacitance and conductance is quantified.

Index Terms—Air-isolation, low-loss, silicon interposer, through-silicon via (TSV), 2.5-dimensional IC (2.5D IC).

I. INTRODUCTION

Silicon interposers with high-density interconnects have been widely explored to obtain high-bandwidth chip-to-chip communication [1]. Moreover, silicon interposers enable the integration of heterogeneous technologies such as logic, radio-frequency microelectromechanical systems (RF MEMS), and passives yielding compact high-performance systems [2], [3]. However, the integration of these components necessitates large and thick silicon interposers to address warpage challenges [4], [5]. These thick interposers, in turn, result in increased TSV loss as well as capacitance and coupling between TSVs [6]. To address these challenges, various approaches have been demonstrated in the literature: low-k materials for the TSV liner or increased thickness of the TSV liner [7], high-resistivity silicon or glass substrates [7], [8], TSVs in polymer wells [9], coaxial TSVs [8], and an air-gap liner between a copper via and a silicon substrate [5]. Among the various approaches explored in the literature, obtaining an air-gap between the copper via and the silicon substrate [5] has been of significant interest since the ε_r of air is approximately 1, which can significantly reduce the TSV capacitance and loss. Air-gap TSVs with improved electrical performance have been shown in the literature using sacrificial materials (e.g., polypropylene carbonate) or using silicon trench formation to achieve air liners [5], [10], [11]. However, due to wider air-gap liners, the fabrication of re-distribution layers (RDL) becomes difficult.

To address these challenges, this letter introduces air-isolated TSVs for an envisioned thick silicon interposer supporting heterogeneous technologies, as shown in Fig. 1. The proposed TSVs are fabricated by etching silicon around each of the TSVs using the Bosch process to partially isolate them by air. This approach results in reduced RF losses, while enabling single-side metallization for RDL [4]. To extract the loss of a single TSV from a TSV-trace-TSV structure, a testbed of air-isolated TSVs with L-2L de-embedding [12] structures is presented.

II. DESIGN OF AIR-ISOLATED TSVS WITH THE L-2L DE-EMBEDDING TECHNIQUE

Fig. 2 illustrates schematics of conventional and air-isolated TSVs along with their lumped circuit models [7]. In the model, the substrate portion of the air-isolated TSVs differs from
TABLE I

<table>
<thead>
<tr>
<th>TSVs</th>
<th>Metal traces</th>
<th>Silicon pillars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius</td>
<td>Height</td>
<td>Pitch</td>
</tr>
<tr>
<td>6.5</td>
<td>330</td>
<td>100/200</td>
</tr>
</tbody>
</table>

*All units are in microns.

Conventional TSVs since there is an air region in parallel to a silicon base region, which partially isolates signal and nearby ground TSVs. This etched silicon region reduces TSV loss due to the reduced capacitance and conductance between TSVs. Table I summarizes the dimensions of the TSVs, the silicon pillars, and the metal traces. Moreover, the L-2L de-embedding technique is applied to extract the loss of a TSV from the structure of TSVs and metal traces, as illustrated in Fig. 3.

III. FABRICATION OF AIR-ISOLATED TSVs

Fig. 4 summarizes the fabrication process for the air-isolated TSVs. The fabrication begins with the deposition of silicon dioxide followed by an anisotropic oxide etch. Using the etched oxide as a hard mask, the Bosch process is used to etch through the silicon wafer [Fig. 4(a)]. In this process, the Bosch etching is utilized to fabricate highly scaled TSVs with an aspect ratio of 23 : 1 in a thick silicon substrate ($\sim 330 \mu m$ thick). Following the Bosch process, thermal oxidation is performed to form a dielectric liner for the TSVs. To form a metal seed layer, titanium and copper are deposited using an e-beam evaporator at the back side of the wafer. The etched holes are filled with copper using bottom-up electroplating from the seed layer [Fig. 4(b)]. After electroplating, chemical mechanical polishing (CMP) is performed to remove over-electroplated copper, yielding $330 \mu m$ tall TSVs with $13 \mu m$ diameter. To facilitate probing, metal pads and traces are selectively deposited on TSVs at both sides of the wafer. Lastly, the Bosch process is performed from the back side of the wafer to attain the air-isolated TSV structure [Fig. 4(c)]. In this step, two lengths (L' and $2L'$) of rectangular silicon pillars are fabricated for L-2L de-embedding [12], as shown in Fig. 5.

IV. HIGH-FREQUENCY CHARACTERIZATION WITH PROPOSED DE-EMBEDDING AND RESULTS

The fabricated testbed containing conventional and air-isolated TSVs is characterized using a microprobe station and an Agilent network analyzer. Using the de-embedding technique, the insertion loss of ground-signal-ground (GSG) TSVs is extracted from the measurements and the 3-D full-wave simulations, as shown in Fig. 6. The results show a 46.7% reduction in the insertion loss using the proposed air-isolated TSV technique at 20 GHz compared to conventional TSVs. Moreover, to analyze the reduction of TSV capacitance and conductance, single-port characterization is performed. Following S-parameter to Y-parameter conversion, the capacitance and the conductance of TSVs are extracted as

$$C_{extracted} = \frac{\text{Im} (Y_{11})}{\omega} \quad (1)$$

$$G_{extracted} = \text{Re} (Y_{11}) \quad (2)$$

where ω is an angular frequency [13]. To analyze the reduction in capacitance and conductance as a function of the width of the air-isolation region, three sets of air-isolated TSVs with air region widths of 50, 100, and $150 \mu m$ at a fixed TSV pitch of
The capacitance and the conductance of TSVs decrease as the air-isolation region width increases, showing a maximum capacitance and conductance reduction of 63.2% and 63.6%, respectively, for an air-isolation region width of 150 μm at 20 GHz.

V. CONCLUSION

This letter proposes an air-isolated TSV technique for silicon interposers to reduce RF loss and capacitance. A testbed of conventional and air-isolated TSVs with L-2L de-embedding structures was fabricated and characterized from 10 MHz to 20 GHz. The measured results show that air-isolated TSVs reduce insertion loss by 46.7% compared to conventional TSVs of the same copper via dimensions at 20 GHz. Moreover, the capacitance and the conductance of TSVs decrease as the air-isolation region width increases, showing a maximum capacitance and conductance reduction of 63.2% and 63.6%, respectively, for an air-isolation region width of 150 μm at 20 GHz.

ACKNOWLEDGMENT

The authors wish to thank the staff of Enthone for providing the electroplating solution and the staff of Cabot Microelectronics Corporation for providing CMP slurries.

REFERENCES

Table II

<table>
<thead>
<tr>
<th>TSV Type</th>
<th>Capacitance (pF)</th>
<th>Reduction (%)</th>
<th>Conductance (μS)</th>
<th>Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional TSVs</td>
<td>29.90</td>
<td>33.2</td>
<td>2.60</td>
<td>44.9</td>
</tr>
<tr>
<td>Air-isolated TSVs</td>
<td>23.29</td>
<td>48.0</td>
<td>2.09</td>
<td>55.7</td>
</tr>
</tbody>
</table>

* w_TSV: air-isolation region width

The authors wish to thank the staff of Enthone for providing the electroplating solution and the staff of Cabot Microelectronics Corporation for providing CMP slurries.

ACKNOWLEDGMENT

The authors wish to thank the staff of Enthone for providing the electroplating solution and the staff of Cabot Microelectronics Corporation for providing CMP slurries.

REFERENCES

Table II

<table>
<thead>
<tr>
<th>TSV Type</th>
<th>Capacitance (pF)</th>
<th>Reduction (%)</th>
<th>Conductance (μS)</th>
<th>Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional TSVs</td>
<td>29.90</td>
<td>33.2</td>
<td>2.60</td>
<td>44.9</td>
</tr>
<tr>
<td>Air-isolated TSVs</td>
<td>23.29</td>
<td>48.0</td>
<td>2.09</td>
<td>55.7</td>
</tr>
</tbody>
</table>

* w_TSV: air-isolation region width

The authors wish to thank the staff of Enthone for providing the electroplating solution and the staff of Cabot Microelectronics Corporation for providing CMP slurries.

ACKNOWLEDGMENT

The authors wish to thank the staff of Enthone for providing the electroplating solution and the staff of Cabot Microelectronics Corporation for providing CMP slurries.

REFERENCES